精英家教网 > 高中数学 > 题目详情

【题目】为集合的子集,且,若,则称为集合元“大同集”.

(1)写出实数集的一个二元“大同集”;

(2)是否存在正整数集的二元“大同集”,请说明理由;

(3)求出正整数集的所有三元“大同集”.

【答案】(1);(2)不存在,理由详见解析;(3).

【解析】

(1)利用集合元“大同集”的定义能求出实数集的一个二元“大同集”.

(2)由两个不同的正整数之和不等于两个不同的正整数之积,得到不存在正整数集的二元“大同集”.

(3)设正整数集的三元“大同集”为.则,利用列举法能求出正整数集的所有三元“大同集”.

解:(1)∵设为集合2元“大同集”.

时,,得

实数集的一个二元“大同集”为

(2)不存在正整数集的二元“大同集”,

两个不同的正整数之和不可能等于两个不同的正整数之积,

不存在正整数集的二元“大同集”.

(3)设正整数集的三元“大同集”为

利用列举法得的值分别为123

正整数集的所有三元“大同集”为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正三棱柱中, 分别为的中点,设.

(1)求证:平面平面

(2)若二面角的平面角为,求实数的值,并判断此时二面角是否为直二面角,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为向国际化大都市目标迈进,沈阳市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有来沈阳的3名工人相互独立地从这60个项目中任选一个项目参与建设.

)求这3人选择的项目所属类别互异的概率;

)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令.

(1)当时,求函数的单调递增区间;

(2)若关于的不等式恒成立,求整数的最小值;

(3)若,正实数满足,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为. 

(1)当时,求曲线和曲线的交点的直角坐标;

(2)当时,设 分别是曲线与曲线上动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则(

(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,其中,由中的元素构成两个相应的集合:

其中是有序数对,集合中的元素个数分别为

若对于任意的,总有,则称集合具有性质

)检验集合是否具有性质并对其中具有性质的集合,写出相应的集合

)对任何具有性质的集合,证明

)判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中, ,底面为梯形, 平面.

(1)证明:平面平面

(2)当异面直线所成角为时,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民的节能环保意识,汕头市面向全市征召义务宣传志愿者,从符合条件的 500 名志愿者中随机抽取 100 名,其年龄频率分布直方图如图所示,其中年龄分组区是:

(1)求图中的值,并根据频率分布直方图估计这 500 名志愿者中年龄在岁的人数;

(2)在抽出的 100 名志愿者中按年龄采用分层抽样的方法抽取 10 名参加人民广场的宣传活动,再从这 10 名志愿者中选取 3 名担任主要负责人.记这 3 名志愿者中“年龄低于 35 岁”的人数为 ,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案