·ÖÎö £¨I£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬¸ù¾ÝÌõ¼þÁз½³Ì×é½â³öa£¬b¼´¿É£»
£¨II£©£¨1£©°Ñx=-$\frac{6}{5}$´úÈëÍÖÔ²·½³Ì½â³öA£¬B×ø±ê£¬¸ù¾ÝÈý½ÇÐεı߳¤¼´¿ÉÇó³ö¡ÏAQB£»
£¨2£©ÉèABбÂÊΪk£¬ÁªÁ¢·½³Ì×éÇó³öA£¬B×ø±êµÄ¹ØÏµ£¬Í¨¹ý¼ÆËã$\overrightarrow{QA}•\overrightarrow{QB}$=0µÃ³ö$\overrightarrow{QA}¡Í\overrightarrow{QB}$£¬Ôòµ±¡÷QABΪµÈÑüÖ±½ÇÈý½ÇÐÎʱ£¬È¡ABÖеãN£¬ÔòQN¡ÍAB£¬¼ÆËãQNµÄбÂÊÅжÏÊÇ·ñΪ-$\frac{1}{k}$¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨I£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬£¨a£¾b£¾0£©£®
Å×ÎïÏßy=$\frac{1}{4}$x2µÄ½¹µãΪ£¨0£¬1£©£¬
¡à$\left\{\begin{array}{l}{b=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}-{b}^{2}={c}^{2}}\end{array}\right.$£¬½âµÃa2=4£¬
¡àÍÖÔ²¦£µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£®
£¨II£©Q£¨-2£¬0£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
£¨1£©µ±Ö±Ïßl´¹Ö±ÓÚxÖáʱ£¬Ö±ÏßlµÄ·½³ÌΪx=-$\frac{6}{5}$£®ÔòÖ±ÏßlÓëxÖá½»ÓÚM£¨-$\frac{6}{5}$£¬0£©£®
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{x=-\frac{6}{5}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-\frac{6}{5}}\\{y=\frac{4}{5}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-\frac{6}{5}}\\{y=-\frac{4}{5}}\end{array}\right.$£®
²»·ÁÉèAÔÚµÚ¶þÏóÏÞ£¬ÔòA£¨-$\frac{6}{5}$£¬$\frac{4}{5}$£©£¬B£¨-$\frac{6}{5}$£¬-$\frac{4}{5}$£©£®
¡à|QM|=|AM|=$\frac{4}{5}$£®
¡à¡ÏAQM=45¡ã£¬¡à¡ÏAQB=2¡ÏAQM=90¡ã£®
£¨2£©µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±Ïßl·½³ÌΪy=k£¨x+$\frac{6}{5}$£©£¨k¡Ù0£©£®
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=k£¨x+\frac{6}{5}£©}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÔªµÃ£¨25+100k2£©x2+240k2x+144k2-100=0£®
¡àx1+x2=$\frac{-240{k}^{2}}{25+100{k}^{2}}$£¬x1x2=$\frac{144{k}^{2}-100}{25+100{k}^{2}}$£®
y1y2=k2£¨x1+$\frac{6}{5}$£©£¨x2+$\frac{6}{5}$£©=$\frac{144{k}^{4}-100{k}^{2}}{25+100{k}^{2}}$-$\frac{6}{5}{k}^{2}$•$\frac{240{k}^{2}}{25+100{k}^{2}}$+$\frac{36{k}^{2}}{25}$£®
¡ß$\overrightarrow{QA}$=£¨x1+2£¬y1£©£¬$\overrightarrow{QB}$=£¨x2+2£¬y2£©£¬
¡à$\overrightarrow{QA}•\overrightarrow{QB}$=x1x2+2£¨x1+x2£©+4+y1y2=$\frac{144{k}^{2}-100}{25+100{k}^{2}}$-$\frac{480{k}^{2}}{25+100{k}^{2}}$+4+$\frac{144{k}^{4}-100{k}^{2}}{25+100{k}^{2}}$-$\frac{6}{5}{k}^{2}$•$\frac{240{k}^{2}}{25+100{k}^{2}}$+$\frac{36{k}^{2}}{25}$=0£®
¡àQA¡ÍQB£¬¼´¡÷QABÊÇÖ±½ÇÈý½ÇÐΣ®
¼ÙÉè´æÔÚÖ±ÏßlʹµÃ¡÷QABÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬Ôò|QA|=|QB|£®
È¡ABµÄÖеãN£¬Á¬½áQN£¬ÔòQN¡ÍAB£®
ÓÖxN=$\frac{1}{2}$£¨x1+x2£©=-$\frac{120{k}^{2}}{25+100{k}^{2}}$=-$\frac{24{k}^{2}}{2+20{k}^{2}}$£¬yN=k£¨xN+$\frac{6}{5}$£©=$\frac{6k}{5+20{k}^{2}}$£®
¡àkQN=$\frac{6k}{16{k}^{2}+10}$£¬¡àkQN•kAB=$\frac{6{k}^{2}}{16{k}^{2}+10}$¡Ù-1£®
¡àQNÓëAB²»´¹Ö±£¬Ã¬¶Ü£®
¡àÖ±ÏßlÓëxÖá²»´¹Ö±£¬²»´æÔÚÖ±ÏßlʹµÃ¡÷QABΪµÈÑüÈý½ÇÐΣ®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²£¬Å×ÎïÏßµÄÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x2=py£¨x¡Ù0£© | B£® | y2=px£¨y¡Ù0£© | C£® | x2=4py£¨x¡Ù0£© | D£® | y2=4px£¨y¡Ù0£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | 4$\sqrt{6}$ | C£® | 8 | D£® | 8$\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{5}$ | B£® | $\frac{{\sqrt{5}}}{2}$ | C£® | 2 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com