2£®ÒÑÖªÍÖÔ²¦£µÄÖÐÐÄÔÚÔ­µã£¬½¹µãF1£¬F2ÔÚxÖáÉÏ£¬ÀëÐÄÂʵÈÓÚ$\frac{\sqrt{3}}{2}$£¬ËüµÄÒ»¸ö¶¥µãÇ¡ºÃÊÇÅ×ÎïÏßy=$\frac{1}{4}$x2µÄ½¹µã£®
£¨1£©ÇóÍÖÔ²¦£µÄ±ê×¼·½³Ì£»
£¨¢ò£©QΪÍÖÔ²¦£µÄ×󶥵㣬ֱÏßl¾­¹ýµã£¨-$\frac{6}{5}$£¬0£©ÓëÍÖÔ²¦£½»ÓÚA£¬BÁ½µã£®
£¨1£©ÈôÖ±Ïßl´¹Ö±ÓÚxÖᣬÇó¡ÏAQBµÄ´óС£»
£¨2£©ÈôÖ±ÏßlÓëxÖá²»´¹Ö±£¬ÊÇ·ñ´æÔÚÖ±ÏßlʹµÃ¡÷QABΪµÈÑüÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨I£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬¸ù¾ÝÌõ¼þÁз½³Ì×é½â³öa£¬b¼´¿É£»
£¨II£©£¨1£©°Ñx=-$\frac{6}{5}$´úÈëÍÖÔ²·½³Ì½â³öA£¬B×ø±ê£¬¸ù¾ÝÈý½ÇÐεı߳¤¼´¿ÉÇó³ö¡ÏAQB£»
£¨2£©ÉèABбÂÊΪk£¬ÁªÁ¢·½³Ì×éÇó³öA£¬B×ø±êµÄ¹ØÏµ£¬Í¨¹ý¼ÆËã$\overrightarrow{QA}•\overrightarrow{QB}$=0µÃ³ö$\overrightarrow{QA}¡Í\overrightarrow{QB}$£¬Ôòµ±¡÷QABΪµÈÑüÖ±½ÇÈý½ÇÐÎʱ£¬È¡ABÖеãN£¬ÔòQN¡ÍAB£¬¼ÆËãQNµÄбÂÊÅжÏÊÇ·ñΪ-$\frac{1}{k}$¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨I£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬£¨a£¾b£¾0£©£®
Å×ÎïÏßy=$\frac{1}{4}$x2µÄ½¹µãΪ£¨0£¬1£©£¬
¡à$\left\{\begin{array}{l}{b=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}-{b}^{2}={c}^{2}}\end{array}\right.$£¬½âµÃa2=4£¬
¡àÍÖÔ²¦£µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£®
£¨II£©Q£¨-2£¬0£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
£¨1£©µ±Ö±Ïßl´¹Ö±ÓÚxÖáʱ£¬Ö±ÏßlµÄ·½³ÌΪx=-$\frac{6}{5}$£®ÔòÖ±ÏßlÓëxÖá½»ÓÚM£¨-$\frac{6}{5}$£¬0£©£®
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{x=-\frac{6}{5}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-\frac{6}{5}}\\{y=\frac{4}{5}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-\frac{6}{5}}\\{y=-\frac{4}{5}}\end{array}\right.$£®
²»·ÁÉèAÔÚµÚ¶þÏóÏÞ£¬ÔòA£¨-$\frac{6}{5}$£¬$\frac{4}{5}$£©£¬B£¨-$\frac{6}{5}$£¬-$\frac{4}{5}$£©£®
¡à|QM|=|AM|=$\frac{4}{5}$£®
¡à¡ÏAQM=45¡ã£¬¡à¡ÏAQB=2¡ÏAQM=90¡ã£®
£¨2£©µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±Ïßl·½³ÌΪy=k£¨x+$\frac{6}{5}$£©£¨k¡Ù0£©£®
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=k£¨x+\frac{6}{5}£©}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÔªµÃ£¨25+100k2£©x2+240k2x+144k2-100=0£®
¡àx1+x2=$\frac{-240{k}^{2}}{25+100{k}^{2}}$£¬x1x2=$\frac{144{k}^{2}-100}{25+100{k}^{2}}$£®
y1y2=k2£¨x1+$\frac{6}{5}$£©£¨x2+$\frac{6}{5}$£©=$\frac{144{k}^{4}-100{k}^{2}}{25+100{k}^{2}}$-$\frac{6}{5}{k}^{2}$•$\frac{240{k}^{2}}{25+100{k}^{2}}$+$\frac{36{k}^{2}}{25}$£®
¡ß$\overrightarrow{QA}$=£¨x1+2£¬y1£©£¬$\overrightarrow{QB}$=£¨x2+2£¬y2£©£¬
¡à$\overrightarrow{QA}•\overrightarrow{QB}$=x1x2+2£¨x1+x2£©+4+y1y2=$\frac{144{k}^{2}-100}{25+100{k}^{2}}$-$\frac{480{k}^{2}}{25+100{k}^{2}}$+4+$\frac{144{k}^{4}-100{k}^{2}}{25+100{k}^{2}}$-$\frac{6}{5}{k}^{2}$•$\frac{240{k}^{2}}{25+100{k}^{2}}$+$\frac{36{k}^{2}}{25}$=0£®
¡àQA¡ÍQB£¬¼´¡÷QABÊÇÖ±½ÇÈý½ÇÐΣ®
¼ÙÉè´æÔÚÖ±ÏßlʹµÃ¡÷QABÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬Ôò|QA|=|QB|£®
È¡ABµÄÖеãN£¬Á¬½áQN£¬ÔòQN¡ÍAB£®
ÓÖxN=$\frac{1}{2}$£¨x1+x2£©=-$\frac{120{k}^{2}}{25+100{k}^{2}}$=-$\frac{24{k}^{2}}{2+20{k}^{2}}$£¬yN=k£¨xN+$\frac{6}{5}$£©=$\frac{6k}{5+20{k}^{2}}$£®
¡àkQN=$\frac{6k}{16{k}^{2}+10}$£¬¡àkQN•kAB=$\frac{6{k}^{2}}{16{k}^{2}+10}$¡Ù-1£®
¡àQNÓëAB²»´¹Ö±£¬Ã¬¶Ü£®
¡àÖ±ÏßlÓëxÖá²»´¹Ö±£¬²»´æÔÚÖ±ÏßlʹµÃ¡÷QABΪµÈÑüÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²£¬Å×ÎïÏßµÄÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¼¯ºÏA={x|-2¡Üx¡Ü5}£¬B={x|m+1¡Üx¡Ü2m-1}
£¨1£©µ±m=3ʱ£¬Ç󼯺ÏA¡ÉB£»∁RB£»£¨∁RB£©¡È£¨∁RA£©£»
£¨2£©ÈôB⊆A£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}{x^2}-£¨{{a^2}-a}£©lnx-x$£¨a¡Ü$\frac{1}{2}$£©£®
£¨¢ñ£© ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£© Éèg£¨x£©=a2lnx2-x£¬Èôf£¨x£©£¾g£¨x£©¶Ô?x£¾1ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2a}$x2-lnx£¬ÆäÖÐa£¾0£®
£¨1£©µ±a=4ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±x¡Ê[1£¬2]ʱ£¬²»µÈʽf£¨x£©£¾1ºã³ÉÁ¢£¬ÆäʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=x-$\frac{2a-1}{x}$-2alnx£¨a¡ÊR£©£®
£¨1£©Èôº¯Êýf£¨x£©ÔÚx=$\frac{1}{2}$´¦È¡µÃ¼«Öµ£¬ÇóʵÊýaµÄÖµ£»
£¨2£©Èô²»µÈʽf£¨x£©¡Ý0ÔÚ[1£¬+¡Þ£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®PΪÇúÏßC£ºx2=2py£¨p£¾0£©ÉÏÈÎÒâÒ»µã£¬OÎª×ø±êÔ­µã£¬ÔòÏß¶ÎPOµÄÖеãMµÄ¹ì¼£·½³ÌÊÇ£¨¡¡¡¡£©
A£®x2=py£¨x¡Ù0£©B£®y2=px£¨y¡Ù0£©C£®x2=4py£¨x¡Ù0£©D£®y2=4px£¨y¡Ù0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬Íø¸ñÖ½ÉÏÕý·½ÐÎС¸ñµÄ±ß³¤Îª1£¬Í¼ÖдÖÏß»­³öµÄÊÇijËÄÀâ×¶µÄÈýÊÓͼ£¬Ôò¸ÃËÄÀâ×¶µÄËĸö²àÃæÖÐÃæ»ý×îСµÄÒ»¸ö²àÃæµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®4B£®4$\sqrt{6}$C£®8D£®8$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ë«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$µÄ½¥½üÏß·½³ÌΪy=¡À2x£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®$\frac{{\sqrt{5}}}{2}$C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÉèÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬¹ýµãFÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïßl½»Å×ÎïÏßCÓÚM£¬NÁ½µã£¬ÒÑÖª|MN|=4£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©¹ýµãFÈÎÒâ×÷Ï໥´¹Ö±µÄÁ½ÌõÖ±Ïßl1£¬l2£¬·Ö±ð½»Å×ÎïÏßCÓÚ²»Í¬µÄÁ½µãA£¬BºÍ²»Í¬µÄÁ½µãD£¬E£¬ÉèÏß¶ÎAB£¬DEµÄÖеã·Ö±ðΪP£¬Q£¬ÇóÖ¤£ºÖ±ÏßPQ¹ý¶¨µãR£¬²¢Çó³ö¶¨µãRµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸