精英家教网 > 高中数学 > 题目详情
1.集合P={x|$\frac{x-1}{x+3}$>0},Q={x|y=$\sqrt{4-{x}^{2}}$},则P∩Q=(  )
A.(1,2]B.[1,2]C.(-∞,-3)∪(1,+∞)D.[1,2)

分析 利用不等式的解法求出集合P,函数的定义域求出集合Q,然后求解交集即可.

解答 解:集合P={x|$\frac{x-1}{x+3}$>0}={x|x>1或x<-3},
Q={x|y=$\sqrt{4-{x}^{2}}$}={x|-2≤x≤2},
P∩Q={x|1<x≤2}=(1,2].
故选:A.

点评 本题考查集合的交集的求法,分式不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是(  )
A.ax+by+czB.az+by+cxC.ay+bz+cxD.ay+bx+cz

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(文)试卷(解析版) 题型:选择题

设各项都是正数的等差数列的公差为,前项和为,若成等比数列,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(理)试卷(解析版) 题型:填空题

已知是直线与圆的公共点,则的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(理)试卷(解析版) 题型:选择题

设各项都是正数的等差数列的公差为,前项和为,若成等比数列,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,一动圆经过点($\frac{1}{2}$,0)且与直线x=-$\frac{1}{2}$相切,设该动圆圆心的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)设P是曲线E的动点,点B、C在y轴上,△PBC的内切圆的方程为(x-1)2+y2=1,求△PBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,短轴长为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若A、B是椭圆C上的两动点,O为坐标原点,OA、OB的斜率分别为k1,k2,问是否存在非零常数λ,使k1•k2=λ时,△AOB的面积S为定值,若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,点M为AB1的中点,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(点P、Q可以重合),则MP+PQ的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知x1,x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(Ⅰ)若x1=-1,x2=2,求函数f(x)的解析式;
(Ⅱ)若|x1|+|x2|=2$\sqrt{2}$,求实数b的最大值.

查看答案和解析>>

同步练习册答案