【题目】某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8两月客户投入的健身消费金额,健身馆随机抽样统计了2019年7、8两月100名客户的消费金额,分组如下:
(单位:元),得到如图所示的频率分布直方图:
![]()
(1)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据 处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有
的把握认为“健身达人”与性别有关?
健身达人 | 非健身达人 | 总计 | |
男 | 10 | ||
女 | 30 | ||
总计 |
(2)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为
,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.
若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
(3)在(2)中的方案二中,金额超过800元可抽奖三次,假设三次中奖结果互不影响,且三次中奖的概率为
,记
为锐角
的内角,
求证:![]()
附:
|
|
|
|
|
|
|
|
|
|
|
|
![]()
【答案】(1)列联表见解析,有
的把握认为“健身达人”与性别有关系;
(2)所以选择方案二更划算;
(3)见解析.
【解析】
(1)先根据题目完善表格,再根据公式计算出
,与
比较大小即可得出答案;
(2)若第一个方案,易得付款金额,第二个方案,设付款
元,则
可能取值为700,800,900,1000,求出分布列,计算出
的期望值,比较大小即可;
(3)求出至少中一次的概率
,通过
可得答案.
(1)列联表如下:
健身达人 | 非健身达人 | 总计 | |
男 | 10 | 40 | 50 |
女 | 20 | 30 | 50 |
总计 | 30 | 70 | 100 |
因为
,
因此有
的把握认为“健身达人”与性别有关系;
(2)若选择方案一:则需付款900元;
若选择方案二:设付款
元,则
可能取值为700,800,900,1000.
,
,
,
,
所以
(元),
因为
,所以选择方案二更划算;
(3)∵
是锐角三角形,
∴
,则三次抽奖机会中,该顾客至少中一次的概率为:
由概率的定义可知:
,故有:
.
科目:高中数学 来源: 题型:
【题目】交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为
,其范围为
,分别有五个级别:
畅通;
基本畅通;
轻度拥堵;
中度拥堵;
严重拥堵.晚高峰时段(
),从某市交通指挥中心选取了市区20个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示.
![]()
(Ⅰ)用分层抽样的方法从交通指数在
,
,
的路段中共抽取
个路段,求依次抽取的三个级别路段的个数;
(Ⅱ)从(Ⅰ)中抽出的
个路段中任取
个,求至少有
个路段为轻度拥堵的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的右焦点到渐近线的距离为3.现有如下条件:①双曲线
的离心率为
; ②双曲线
与椭圆
共焦点; ③双曲线右支上的一点
到
的距离之差是虚轴长的
倍.
请从上述3个条件中任选一个,得到双曲线
的方程为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x对所有的b∈(-∞,0],x∈(e,e2]都成立,则实数a的取值范围是( )
A. [e,+∞)B. [
,+∞)
C. [
,e2)D. [e2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是圆
:
上的一动点,点
,点
在线段
上,且满足
.
(1)求点
的轨迹
的方程;
(2)设曲线
与
轴的正半轴,
轴的正半轴的交点分别为点
,
,斜率为
的动直线
交曲线
于
、
两点,其中点
在第一象限,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的上顶点为
,以
为圆心椭圆的长半轴为半径的圆与
轴的交点分别为
,
.
(1)求椭圆
的标准方程;
(2)设不经过点
的直线
与椭圆
交于
,
两点,且
,试探究直线
是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,已知抛物线y2=2px(p>0)及点M(2,0),动直线l过点M交抛物线于A,B两点,当l垂直于x轴时,AB=4.
![]()
(1)求p的值;
(2)若l与x轴不垂直,设线段AB中点为C,直线l1经过点C且垂直于y轴,直线l2经过点M且垂直于直线l,记l1,l2相交于点P,求证:点P在定直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com