精英家教网 > 高中数学 > 题目详情
已知F1,F2分别为椭圆的左、右焦点,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为D,线段DF2的垂直平分线交l2于点M.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)过点F1作直线交曲线C于两个不同的点P和Q,设=λ,若λ∈[2,3],求的取值范围.
【答案】分析:(Ⅰ)利用中垂线的性质列方程,或者利用抛物线的定义写方程.
(2)利用定比分点坐标公式及向量坐标运算公式
解答:解:(Ⅰ)设M(x,y),则D(-1,y),由中垂线的性质知|MD|=|MF2|
∴|x+1|=化简得C的方程为y2=4x(3分)
(另:由|MD|=|MF2|知曲线C是以x轴为对称轴,以F2为焦点,以l1为准线的抛物线
所以,,则动点M的轨迹C的方程为y2=4x)
(Ⅱ)设P(x1,y1),Q(x2,y2),由
又由P(x1,y1),Q(x2,y2)在曲线C上知,②
由①②解得
所以有x1x2=1,y1y2=4(8分)
=(x1-1)(x2-1)+y1y2=x1x2-x1-x2+1+y1y2=(10分)
,有在区间[2,3]上是增函数,
,进而有
所以,的取值范围是(13分)
点评:注意换元的思想,换元过程中特别注意变量范围的改变.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆
x2
25
+
y2
9
=1的左、右焦点,P为椭圆上一点,Q是y轴上的一个动点,若|
PF1
|-|
PF2
|=4,则
PQ
•(
PF1
-
PF2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别为椭圆
x2
3
+
y2
2
=1
的左、右焦点,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为D,线段DF2的垂直平分线交l2于点M.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)过点F1作直线交曲线C于两个不同的点P和Q,设
F1P
F1Q
,若λ∈[2,3],求
F2P
F2Q
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆
x2
16
+
y2
9
=1
的左、右焦点,点P在椭圆上,若P、F1、F2是一个直角三角形的三个顶点,则△PF1F2的面积为
9
7
4
9
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆的左、右焦点,椭圆上点M的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的
2
3
,则椭圆的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲线x2-
y2
4
=1
的左、右焦点,P是双曲线上的动点,过F1作∠F1PF2的平分线的垂线,垂足为H,则点H的轨迹为(  )

查看答案和解析>>

同步练习册答案