【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为
(θ为参数),直线l的参数方程为
.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为
,求a.
【答案】(1)
与
的交点坐标为
,
;(2)
或
.
【解析】试题分析:(1)直线与椭圆的参数方程化为直角坐标方程,联立解交点坐标;(2)利用椭圆参数方程,设点
,由点到直线距离公式求参数.
试题解析:(1)曲线
的普通方程为
.
当
时,直线
的普通方程为
.
由
解得
或
.
从而
与
的交点坐标为
,
.
(2)直线
的普通方程为
,故
上的点
到
的距离为
.
当
时,
的最大值为
.由题设得
,所以
;
当
时,
的最大值为
.由题设得
,所以
.
综上,
或
.
点睛:本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表示出椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数
的值.
科目:高中数学 来源: 题型:
【题目】【2017辽宁庄河市四模】如图,四棱锥
中,底面
是矩形,平面
平面
,且
是边长为
的等边三角形,
,点
是
的中点.
![]()
(1)求证:
平面
;
(2)点
在
上,且满足
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,分别测出它们的高度如下(单位:cm)
甲:19 20 21 23 25 29 32 33 37 41
乙:10 24 26 30 34 37 44 46 47 48
(1)用茎叶图表示上述两组数据,并对两块地抽取树苗的高度进行比较,写出一个统计结论;
(2)苗圃基地分配这20株树苗的栽种任务,小王在苗高大于40cm的5株树苗中随机的选种2株,则小王没有选到甲苗圃树苗的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
,cosA=﹣
.
(1)求sinC和b的值;
(2)求cos(2A+
)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(4,3),
=(2,﹣1),O为坐标原点,P是直线AB上一点.
(1)若点P是线段AB的中点,求向量
与向量
夹角θ的余弦值;
(2)若点P在线段AB的延长线上,且|
|=
|
|,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高二年级学生会有理科生4名,其中3名男同学;文科生3名,其中有1名男同学.从这7名成员中随机抽4人参加高中示范校验收活动问卷调查.
(Ⅰ)设
为事件“选出的4人中既有文科生又有理科生”,求事件
的概率;
(Ⅱ)设
为选出的4人中男生人数与女生人数差的绝对值,求随机变量
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com