精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的不等式ax2﹣bx+c≥0的解集为{x|1≤x≤2},则cx2+bx+a≤0的解集为

【答案】(﹣∞,﹣1]∪[﹣ ,+∞)
【解析】解:∵不等式ax2﹣bx+c≥0的解集为{x|1≤x≤2},
∴a<0,且1+2= ,1×2=
=3, =2,
∴c<0,b<0,
= =
∴不等式cx2+bx+a≤0转化为x2+ x+ ≥0,
即为x2+ x+ ≥0,
即为(2x+1)(x+1)≥0,
解得x≤﹣1或x≥﹣
∴不等式cx2+bx+a≤0的解集为(﹣∞,﹣1]∪[﹣ ,+∞).
所以答案是:(﹣∞,﹣1]∪[﹣ ,+∞).
【考点精析】本题主要考查了解一元二次不等式的相关知识点,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义一种运算ab= ,令f(x)=(3x2+6x)(2x+3﹣x2),则函数f(x)的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017江西南昌十所重点二模】选修4—4:坐标系与参数方程

在平面直角坐标系xOy中,曲线C1的参数方程为t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2

(Ⅰ)求曲线C1C2的直角坐标方程,并分别指出其曲线类型;

(Ⅱ)试判断:曲线C1C2是否有公共点?如果有,说明公共点的个数;如果没有,请说明理由;

(Ⅲ)设是曲线C1上任意一点,请直接写出a + 2b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)

求b关于a的函数关系式,并写出定义域;

证明:b>3a;

这两个函数的所有极值之和不小于,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,前n和为Sn , 且Sn= (n∈N*).
(1)求证:数列{an}是等差数列;
(2)设bn=an3n , 求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣
(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为 ,求a的值;
(3)若f(x)>x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案