精英家教网 > 高中数学 > 题目详情
己知函数f(x)=lnx-ax+1(a>0).
(1)试探究函数f(x)的零点个数;
(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f(x)的导函数为f′(x),求证:f′(x0)<0.
考点:导数在最大值、最小值问题中的应用,函数零点的判定定理
专题:导数的综合应用
分析:(1)中,通过对f(x)求导,研究f(x)的单调性及最值,从而利用数形结合的方法判断零点的个数;
(2)将A、B两点代入到f(x)中,即
f(x1)=0
f(x2)=0
,解出a=
lnx1-lnx2
x1-x2
,然后写出f'(x0)的表达式,即用x1,x2 表示f'(x0),f'(x0)=
1
x1-x2
[
2(
x1
x2
-1)
x1
x2
+1
-ln
x1
x2
]
,再令
x1
x2
=t∈(0,1)
,研究h(t)=
2(t-1)
t+1
-lnt
的性质,从而证明f'(x0)的正负.
解答: 解:(1)f(x)=
1
x
-a=
1-ax
x

令f'(x)>0,则0<x<
1
a
;令f'(x)<0,则x>
1
a

∴f(x)在x=a时取得最大值,即f(x)max=f(
1
a
)=ln
1
a

①当ln
1
a
>0
,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→-∞;当x→+∞时,f(x)→-∞
∴f(x)的图象与x轴有2个交点,分别位于(0,
1
a
)及(
1
a
,+∞

即f(x)有2个零点;
②当ln
1
a
=0
,即a=1时,f(x)有1个零点;
③当ln
1
a
<0
,即a>1时f(x)没有零点;
(2)由
f(x1)=0⇒lnx1-ax1+1=0,
f(x2)=0⇒lnx2-ax2+1=0,
a=
lnx1-lnx2
x1-x2
(0<x1<x2),f(x0)=
1
x0
-a=
2
x1+x2
-a=
2
x1+x2
-
lnx1-lnx2
x1-x2
=
1
x1-x2
[
2(
x1
x2
-1)
x1
x2
+1
-ln
x1
x2
]
,令
x1
x2
=t∈(0,1)
,设h(t)=
2(t-1)
t+1
-lnt
,t∈(0,1)且h(1)=0
h(t)=
4
(t+1)2
-
1
t
=
-(t-1)2
(t+1)2t
,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0
2(
x1
x2
-1)
x1
x2
+1
-ln
x1
x2
>0
,又
1
x1-x2
<0

∴f'(x0)=
1
x1-x2
[
2(
x1
x2
-1)
x1
x2
+1
-ln
x1
x2
]
<0.
点评:本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令
x1
x2
=t
的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有
 
种不同的填报专业志愿的方法(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(?x+φ)+h(A>0,?>0,|φ|≤
π
2
)的部分图象如图所示,若将函数向右平移m(m>0)个单位后成为偶函数,则m的最小值为(  )
A、
3
B、5
C、
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点F1(-c,0)、F2(c,0)分别是椭圆
C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,过点F1作x轴的垂线,交椭圆C的上半部分于点P,过点F2作PF2的垂线交直线x=
a2
c
于点Q.
(1)如果点Q的坐标为(4,4),求椭圆C的方程;
(2)试判断直线PQ与椭圆C的公共点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足首项为a1=2,an+1=2an(n∈N*).设bn=3log2an-2(n∈N*),数列{cn}满足cn=anbn
(Ⅰ)求证:数列{bn}成等差数列;
(Ⅱ)求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-ex(a>0).
(1)若a=
1
2
,求函数f(x)在x=1处的切线方程;
(2)当1≤a≤e+1时,求证:f(x)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+ax+b=0有且只有一个根 
(1)求b的值(用a表示);
(2)若a∈[-3,3],求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C1y2=4mx(m>0)的准线与x轴交于F1,且C1的焦 点为F2;以F1,F2为焦点,离心率e=
1
2
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(Ⅰ)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m,若不存在,请说明理由;
(Ⅱ)若m=1,直线l经过椭圆C2的右焦点F2,且与抛物线C1交于A1,A2,以线段A1A2为直径作圆,若圆经过点P,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)在(0,+∞)上为减函数,且f(x)<0(x>0),试判断f(x)=
1
f(x)
在(0,+∞)上的单调性,并给出证明过程.

查看答案和解析>>

同步练习册答案