精英家教网 > 高中数学 > 题目详情
如图,设抛物线C1y2=4mx(m>0)的准线与x轴交于F1,且C1的焦 点为F2;以F1,F2为焦点,离心率e=
1
2
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(Ⅰ)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m,若不存在,请说明理由;
(Ⅱ)若m=1,直线l经过椭圆C2的右焦点F2,且与抛物线C1交于A1,A2,以线段A1A2为直径作圆,若圆经过点P,求直线l的斜率.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)假设存在实数m,在△PF1F2中,|PF1|最长,|PF2|最短,令|F1F2|=2c=2m,则|PF1|=2m+1,|PF2|=2m-1,把P(m-1,4m(m-1))代入椭圆方程求出m值.
(Ⅱ)依题意设直线l的方程为:x=ky+1,k∈R,代入椭圆方程,可得点P的坐标为P(
2
3
2
6
3
),将x=ky+1代入y2=4x得y2-4ky-4=0,由圆经过点P,可得
PA1
PA2
=0,即可求出直线l的斜率.
解答: 解:(Ⅰ)∵C1:y2=4mx(m>0)的右焦点F2(m,0)
∴椭圆的半焦距c=m,
e=
1
2

∴椭圆的长半轴的长a=2m,短半轴的长b=
3
m,
∴椭圆方程为
x2
4m2
+
y2
3m2
=1

假设存在实数m,△PF1F2中的边长是连续自然数,则在△PF1F2中,|PF1|最长,|PF2|最短,
令|F1F2|=2c=2m,则|PF1|=2m+1,|PF2|=2m-1.
由抛物线的定义可得|PF2|=2m-1=xP-(-m),∴xP=m-1.
把P(m-1,4m(m-1))代入椭圆
x2
4m2
+
y2
3m2
=1
,解得m=3.
故存在实数m=3满足条件.
(Ⅱ)依题意设直线l的方程为:x=ky+1,k∈R
代入椭圆方程,可得点P的坐标为P(
2
3
2
6
3
).
将x=ky+1代入y2=4x得y2-4ky-4=0.
设A1(x1,y1)、A2(x2,y2),由韦达定理得y1+y2=4k,y1y2=-4.
∵圆经过点P,
PA1
PA2
=0,
∴(x1-
2
3
,y1-
2
6
3
)•(x2-
2
3
,y2-
2
6
3
)=0,
∴-
24k2+24
6
k+11
9
=0,
∴k=
6
12
11
6
12
点评:本题考查抛物线和椭圆的标准方程和简单性质,考查直线与椭圆的位置关系,同时考查向量知识的运用,综合性较强,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字的和是奇数的概率是(  )
A、0.3B、0.4
C、0.5D、0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=lnx-ax+1(a>0).
(1)试探究函数f(x)的零点个数;
(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f(x)的导函数为f′(x),求证:f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x-1
2x+1
.讨论其奇偶性和单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的二次项系数为a,且不等式f(x)>2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;
(2)若函数f(x)的最大值不小于8,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

a∈R,f(x)=
x
|x-a|

(1)若函数f(x)在[0,+∞)为单调函数,求实数a的取值范围;
(2)设a>0,
(i)证明:函数F(x)=f(x)-
1
2
x
有3个零点;
(ii)若存在实数t(t>a),当x∈[0,t]时函数f(x)的值域为[0,
t
2
]
,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C:x2=2py(p>0)的焦点为F,O为坐标原点;当抛物线上点N的纵坐标为1时,|NF|=2,已知直线l经过抛物线C的焦点F,且与抛物线C交于A,B两点
(1)求抛物线C的方程;
(2)若△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

当a=4或a≤0时,不等式x2-6x<a(x-2)恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为第三象限角,sinα=-
3
5
,则sin2α+cos2α=
 

查看答案和解析>>

同步练习册答案