精英家教网 > 高中数学 > 题目详情
已知椭圆C:+=1(a>b>0)的两焦点与短轴的一个端点连结成等腰直角三角形,直线l:x-y-b=0是抛物线x2=4y的一条切线.
(1)求椭圆方程;
(2)直线l交椭圆C于A、B两点,若点P满足++=(O为坐标原点),判断点P是否在椭圆C上,并说明理由.
【答案】分析:(1)由于直线l:x-y-b=0是抛物线x2=4y的一条切线,联立消去一个未知数,令△=0即可得到b.再利用椭圆C的两焦点与短轴的一个端点连结成等腰直角三角形即可得到,即可得到a.
(2)把直线l的方程与椭圆方程联立即可解得点A,B的坐标,再利用点P满足++=(O为坐标原点)即可得到点P的坐标,判断是否满足椭圆方程即可.
解答:解:(1)联立,消去y得到x2-4x+4b=0.
∵直线l:x-y-b=0是抛物线x2=4y的一条切线,∴△=16-16b=0,解得b=1.
∵椭圆C:+=1(a>b>0)的两焦点与短轴的一个端点连结成等腰直角三角形,
.故所求的椭圆方程为
(2)由得3x2-2x-1=0,解得

设P(x,y),∵
=(0,0),
解得,∴
把点代入椭圆方程,得
∴点P不在椭圆C上.
点评:熟练掌握椭圆的标准方程及其性质、直线与圆锥曲线相切相交问题、向量运算等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:+y2=1,则与椭圆C关于直线y=x成轴对称的曲线的方程是____________.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西桂林市、崇左市、防城港市高考第一次联合模拟理科数学试卷(解析版) 题型:解答题

 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;

(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期摸底考试文科数学 题型:解答题

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一

 

个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

 

 

查看答案和解析>>

同步练习册答案