如图,已知椭圆C:
+
=1(a>b>0)的左、右焦点分别为F
、F
,A是椭圆C上的一点,AF
⊥F
F
,O是坐标原点,OB垂直AF
于B,且OF
=3OB.
![]()
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求t∈(0,b),使得命题“设圆x
+y
=t
上任意点M(x
,y
)处的切线交椭圆C于Q
、Q
两点,那么OQ
⊥OQ
”成立.
(1)椭圆C的离心率为
. (2)t=
b∈(0,b)使得所述命题成
【解析】
试题分析:解:(Ⅰ)解法一:由题设AF
⊥F
F
及F
(-c,0),F
(c,0),不妨设点A(c,y),其中y>0,由于点A在椭圆上,有
+
=1,
+
=1,解得y=
,从而得到A
.
1分
直线AF
的方程为y=
(x+c),整理得b
x-2acy+b
c=0. 2分
由题设,原点O到直线AF
的距离为
|OF
|,即
=
, 3分
将c
=a
-b
代入原式并化简得a
=2b
,即a=
b.
∴e=
=
.即椭圆C的离心率为
.
4分
解法二:点A的坐标为
.
1分
过点O作OB⊥AF
,垂足为B,易知△F
BC∽△F
F
A,
故
=
.
2分
由椭圆定义得|AF
|+|AF
|=2a,又|BO|=
|OF
|,
所以![]()
=
.
3分
解得|F
A|=
,而|F
A|=
,得
=
.
∴e=
=
.即椭圆C的离心率为
.
4分
(Ⅱ)圆x
+y
=t
上的任意点M(x
,y
)处的切线方程为x
x+y
y=t
. 5分
当t∈(0,b)时,圆x
+y
=t
上的任意点都在椭圆内,故此圆在点A处的切线必交椭圆于两个不同的点Q
、Q
,因此点Q
(x
,y
),Q
(x
,y
)的坐标是方程组
的解.
6分
(1)当y![]()
0时,由①式得y=
.代入②式,得x
+2
=2b
,
即(2x
+y
)x
-4t
x
x+2t
-2b
y
=0.
7分
于是x
+x
=
,x
x
=
,
y
y
=
·
=![]()
=
=
.
若QQ
⊥QQ
,则x
x
+ y
y
=
+
=
=0.
所以,3t
-2b
(x
+y
)=0. 8分
在区间(0,b)内,此方程的解为t=
b.
9分
(2)当y
=0时,必有x![]()
0,
同理求得在区间(0,b)内的解为t=
b.
10分
另一方面,当t=
b时,可推出x
x
+ y
y
=0,从而QQ
⊥QQ
. 11分
综上所述,t=
b∈(0,b)使得所述命题成立.
12分
考点:椭圆的方程与性质
点评:解决的关键是熟练的根据椭圆的性质来求解方程,同时借助与联立方程组的思想和韦达定理来表示得到参数的取值范围,属于中档题。
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| 4 |
| x2 |
| 16 |
| y2 |
| 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| b2 |
| y2 |
| a2 |
| F2B |
| AF2 |
| ET |
| EF1 |
| EF2 |
| 1 |
| 2 |
| ET |
| OT |
| 5 |
| 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| F1A |
| F2A |
| π |
| 3 |
| 2π |
| 3 |
4
| ||
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| AP |
| AQ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com