精英家教网 > 高中数学 > 题目详情
12.设f(x)=lnx,0<a<b,若p=f($\sqrt{ab}$),q=f($\frac{a+b}{2}$),r=$\frac{1}{2}$(f(a)+f(b)),则下列关系式中正确的是(  )
A.q=r<pB.p=r<qC.q=r>pD.p=r>q

分析 由题意可得p=$\frac{1}{2}$(lna+lnb),q=ln($\frac{a+b}{2}$)≥ln($\sqrt{ab}$)=p,r=$\frac{1}{2}$(lna+lnb),可得大小关系.

解答 解:由题意可得若p=f($\sqrt{ab}$)=ln($\sqrt{ab}$)=$\frac{1}{2}$lnab=$\frac{1}{2}$(lna+lnb),
q=f($\frac{a+b}{2}$)=ln($\frac{a+b}{2}$)≥ln($\sqrt{ab}$)=p,
r=$\frac{1}{2}$(f(a)+f(b))=$\frac{1}{2}$(lna+lnb),
∴p=r<q,
故选:B

点评 本题考查不等式与不等关系,涉及基本不等式和对数的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.(x2+x+y)5的展开式中,x5y2的系数为(  )
A.10B.20C.30D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x∈R,则“|x-2|<1”是“x2+x-2>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′-CD-B的平面角为α,则(  )
A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(1)证明:A1D⊥平面A1BC;
(2)求二面角A1-BD-B1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的不等式|x+a|<b的解集为{x|2<x<4}
(Ⅰ)求实数a,b的值;
(Ⅱ)求$\sqrt{at+12}$+$\sqrt{bt}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点(x,y)是如图所示的坐标平面的可行域内(阴影部分且包括边界)的任意一点,若目标函数z=x+ay取得最小值的最优解有无数个,则$\frac{y}{x-a}$的最大值是(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=$\frac{a}{{x}^{2}+b}$(其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=ex,其中e为自然对数的底数.
(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;
(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1-a)<$\frac{f(x)}{x}$<bg(x)+(1-b).

查看答案和解析>>

同步练习册答案