3£®Ä³É½ÇøÍâΧÓÐÁ½ÌõÏ໥´¹Ö±µÄÖ±ÏßÐ͹«Â·£¬Îª½øÒ»²½¸ÄÉÆÉ½ÇøµÄ½»Í¨ÏÖ×´£¬¼Æ»®ÐÞ½¨Ò»ÌõÁ¬½ÓÁ½Ìõ¹«Â·ºÍÉ½Çø±ß½çµÄÖ±ÏßÐ͹«Â·£¬¼ÇÁ½ÌõÏ໥´¹Ö±µÄ¹«Â·Îªl1£¬l2£¬É½Çø±ß½çÇúÏßΪC£¬¼Æ»®ÐÞ½¨µÄ¹«Â·Îªl£¬ÈçͼËùʾ£¬M£¬NΪCµÄÁ½¸ö¶Ëµã£¬²âµÃµãMµ½l1£¬l2µÄ¾àÀë·Ö±ðΪ5ǧÃ׺Í40ǧÃ×£¬µãNµ½l1£¬l2µÄ¾àÀë·Ö±ðΪ20ǧÃ׺Í2.5ǧÃ×£¬ÒÔl2£¬l1ÔÚµÄÖ±Ïß·Ö±ðΪx£¬yÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵxOy£¬¼ÙÉèÇúÏßC·ûºÏº¯Êýy=$\frac{a}{{x}^{2}+b}$£¨ÆäÖÐa£¬bΪ³£Êý£©Ä£ÐÍ£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©É蹫·lÓëÇúÏßCÏàÇÐÓÚPµã£¬PµÄºá×ø±êΪt£®
¢ÙÇëд³ö¹«Â·l³¤¶ÈµÄº¯Êý½âÎöʽf£¨t£©£¬²¢Ð´³öÆä¶¨ÒåÓò£»
¢Úµ±tΪºÎֵʱ£¬¹«Â·lµÄ³¤¶È×î¶Ì£¿Çó³ö×î¶Ì³¤¶È£®

·ÖÎö £¨1£©ÓÉÌâÒâÖª£¬µãM£¬NµÄ×ø±ê·Ö±ðΪ£¨5£¬40£©£¬£¨20£¬2.5£©£¬½«Æä·Ö±ð´úÈëy=$\frac{a}{{x}^{2}+b}$£¬½¨Á¢·½³Ì×飬¼´¿ÉÇóa£¬bµÄÖµ£»
£¨2£©¢ÙÇó³öÇÐÏßlµÄ·½³Ì£¬¿ÉµÃA£¬BµÄ×ø±ê£¬¼´¿Éд³ö¹«Â·l³¤¶ÈµÄº¯Êý½âÎöʽf£¨t£©£¬²¢Ð´³öÆä¶¨ÒåÓò£»
¢ÚÉèg£¨t£©=${t}^{2}+\frac{4¡Á1{0}^{6}}{{t}^{4}}$£¬ÀûÓõ¼Êý£¬È·¶¨µ¥µ÷ÐÔ£¬¼´¿ÉÇó³öµ±tΪºÎֵʱ£¬¹«Â·lµÄ³¤¶È×î¶Ì£¬²¢Çó³ö×î¶Ì³¤¶È£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª£¬µãM£¬NµÄ×ø±ê·Ö±ðΪ£¨5£¬40£©£¬£¨20£¬2.5£©£¬
½«Æä·Ö±ð´úÈëy=$\frac{a}{{x}^{2}+b}$£¬µÃ$\left\{\begin{array}{l}{\frac{a}{25+b}=40}\\{\frac{a}{400+b}=2.5}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=1000}\\{b=0}\end{array}\right.$£¬
£¨2£©¢ÙÓÉ£¨1£©y=$\frac{1000}{{x}^{2}}$£¨5¡Üx¡Ü20£©£¬P£¨t£¬$\frac{1000}{{t}^{2}}$£©£¬
¡ày¡ä=-$\frac{2000}{{t}^{3}}$£¬
¡àÇÐÏßlµÄ·½³ÌΪy-$\frac{1000}{{t}^{2}}$=-$\frac{2000}{{t}^{3}}$£¨x-t£©
ÉèÔÚµãP´¦µÄÇÐÏßl½»x£¬yÖá·Ö±ðÓÚA£¬Bµã£¬ÔòA£¨$\frac{3t}{2}$£¬0£©£¬B£¨0£¬$\frac{3000}{{t}^{2}}$£©£¬
¡àf£¨t£©=$\sqrt{£¨\frac{3t}{2}£©^{2}+£¨\frac{3000}{{t}^{2}}£©^{2}}$=$\frac{3}{2}\sqrt{{t}^{2}+\frac{4¡Á1{0}^{6}}{{t}^{4}}}$£¬t¡Ê[5£¬20]£»
¢ÚÉèg£¨t£©=${t}^{2}+\frac{4¡Á1{0}^{6}}{{t}^{4}}$£¬Ôòg¡ä£¨t£©=2t-$\frac{16¡Á1{0}^{6}}{{t}^{5}}$=0£¬½âµÃt=10$\sqrt{2}$£¬
t¡Ê£¨5£¬10$\sqrt{2}$£©Ê±£¬g¡ä£¨t£©£¼0£¬g£¨t£©ÊǼõº¯Êý£»t¡Ê£¨10$\sqrt{2}$£¬20£©Ê±£¬g¡ä£¨t£©£¾0£¬g£¨t£©ÊÇÔöº¯Êý£¬
´Ó¶øt=10$\sqrt{2}$ʱ£¬º¯Êýg£¨t£©Óм«Ð¡ÖµÒ²ÊÇ×îСֵ£¬
¡àg£¨t£©min=300£¬
¡àf£¨t£©min=15$\sqrt{3}$£¬
´ð£ºt=10$\sqrt{2}$ʱ£¬¹«Â·lµÄ³¤¶È×î¶Ì£¬×î¶Ì³¤¶ÈΪ15$\sqrt{3}$ǧÃ×£®

µãÆÀ ±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬¿¼²éµ¼Êý֪ʶµÄ×ÛºÏÔËÓã¬È·¶¨º¯Êý¹ØÏµ£¬ÕýÈ·Çóµ¼Êǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×ãa1=$\frac{1}{4}$£¬a3a5=4£¨a4-1£©£¬Ôòa2=£¨¡¡¡¡£©
A£®2B£®1C£®$\frac{1}{2}$D£®$\frac{1}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Éèf£¨x£©=lnx£¬0£¼a£¼b£¬Èôp=f£¨$\sqrt{ab}$£©£¬q=f£¨$\frac{a+b}{2}$£©£¬r=$\frac{1}{2}$£¨f£¨a£©+f£¨b£©£©£¬ÔòÏÂÁйØÏµÊ½ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®q=r£¼pB£®p=r£¼qC£®q=r£¾pD£®p=r£¾q

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÈýÀą̂DEF-ABCÖУ¬AB=2DE£¬G£¬H·Ö±ðΪAC£¬BCµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºBD¡ÎÆ½ÃæFGH£»
£¨¢ò£©ÈôCF¡ÍÆ½ÃæABC£¬AB¡ÍBC£¬CF=DE£¬¡ÏBAC=45¡ã£¬ÇóÆ½ÃæFGHÓëÆ½ÃæACFDËù³ÉµÄ½Ç£¨Èñ½Ç£©µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬A¡¢B¡¢C¡¢DÎªÆ½ÃæËıßÐÎABCDµÄËĸöÄڽǣ®
£¨¢ñ£©Ö¤Ã÷£ºtan$\frac{A}{2}$=$\frac{1-cosA}{sinA}$£»
£¨¢ò£©ÈôA+C=180¡ã£¬AB=6£¬BC=3£¬CD=4£¬AD=5£¬Çótan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+tan$\frac{D}{2}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®½â²»µÈʽx+|2x+3|¡Ý2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÉèÊýÁÐ {an}µÄǰnÏîºÍΪSn£¬n¡ÊN*£®ÒÑÖªa1=1£¬a2=$\frac{3}{2}$£¬a3=$\frac{5}{4}$£¬ÇÒµ±n¡Ý2ʱ£¬4Sn+2+5Sn=8Sn+1+Sn-1£®
£¨1£©Çóa4µÄÖµ£»
£¨2£©Ö¤Ã÷£º{an+1-$\frac{1}{2}$an}ΪµÈ±ÈÊýÁУ»
£¨3£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¶Ô¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¨aΪ·ÇÁãÕûÊý£©£¬ËÄλͬѧ·Ö±ð¸ø³öÏÂÁнáÂÛ£¬ÆäÖÐÓÐÇÒÖ»ÓÐÒ»¸ö½áÂÛÊÇ´íÎóµÄ£¬Ôò´íÎóµÄ½áÂÛÊÇ£¨¡¡¡¡£©
A£®-1ÊÇf£¨x£©µÄÁãµãB£®1ÊÇf£¨x£©µÄ¼«Öµµã
C£®3ÊÇf£¨x£©µÄ¼«ÖµD£®µã£¨2£¬8£©ÔÚÇúÏßy=f£¨x£©ÉÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÈçÌâͼ£¬ÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¹ýF2µÄÖ±Ïß½»ÍÖÔ²ÓÚP£¬QÁ½µã£¬ÇÒPQ¡ÍPF1
£¨¢ñ£©Èô|PF1|=2+$\sqrt{2}£¬|{P{F_2}}$|=2-$\sqrt{2}$£¬ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©Èô|PF1|=|PQ|£¬ÇóÍÖÔ²µÄÀëÐÄÂÊe£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸