精英家教网 > 高中数学 > 题目详情

已知定义域为的函数是奇函数.
(1)求的值
(2)判断并证明的单调性;
(3)若对任意的,不等式恒成立,求实数的取值范围.

解析试题分析:
(1)由题意可得函数的定义域是是奇函数,把,代入可得的值.
(2)直接利用函数单调性的定义进行判断,判断单调性的解题过程为做差,变形,判断符号,结论.
(3)由(1)可得在它的定义域是是减函数,且是奇函数,不等式化为,可得 ,分两种情况分别求出实数的取值范围
试题解析:(1) 由
检验: 时,

恒成立,即是奇函数.
(2)判断:单调递增
证明:设
  

,即,即
上是增函数
(3)是奇函数
不等式
上是增函数
对任意的,不等式恒成立
对任意的恒成立
对任意的恒成立
第一类:当时,不等式即为恒成立,合题意;
第二类:当时,有
综上:实数的取值范围为
考点:本题主要考查函数的单调性和奇偶性的综合应用,函数的恒成立问题,考查了分类讨论的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数为常数
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整数,使得对于任意均成立,若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,且.
(1)求实数的值;
(2)判断函数上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,当时,
(1)求的函数解析式,并用分段函数的形式给出;
(2)作出函数的简图;
(3)写出函数的单调区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若且对任意实数均有成立,求的表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义域为的奇函数.
(1)求的值;
(2)若,且上的最小值为,求的值.
(3)若,试讨论函数上零点的个数情况。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,函数
(1)当时,讨论的奇偶性;
(2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)求的单调区间;
(2)如果是曲线上的任意一点,若以为切点的切线的斜率恒成立,求实数的最小值;
(3)讨论关于的方程的实根情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)写出的奇偶性与单调性(不要求证明);
(2)若函数的定义域为,求满足不等式的实数的取值集合;
(3)当时,的值恒为负,求的取值范围.

查看答案和解析>>

同步练习册答案