已知函数().
(1)求的单调区间;
(2)如果是曲线上的任意一点,若以为切点的切线的斜率恒成立,求实数的最小值;
(3)讨论关于的方程的实根情况.
(1)单调递增区间为 ,单调递减区间为;(2)的最小值为;(3)时,方程有两个实根,当时,方程有一个实根,当时,方程无实根.
解析试题分析:本题考查导数的运算,利用导数研究函数的单调性、最值等基础知识,考查函数思想,分类讨论思想,考查综合分析和解决问题的能力.第一问,先求导数,令导数等于0,得到方程的根,则为增函数,为减函数,本问要注意函数的定义域;第二问,先利用导数求出切线的斜率,得到恒成立的表达式,将其转化为对恒成立,所以关键就是求,配方法求最大值即可;第三问,先将原方程化为,设,看函数图像与x轴的交点,对求导,判断函数的单调性,求出函数的最大值,讨论最大值的三种情况来决定方程根的情况.
试题解析:(Ⅰ) ,定义域为,
则.
因为,由得, 由得,
所以的单调递增区间为 ,单调递减区间为. .3分
(Ⅱ)由题意,以为切点的切线的斜率满足
,
所以对恒成立.
又当时, ,
所以的最小值为. .6分
(Ⅲ)由题意,方程化简得
令,则.
当时, ,
当时, ,
所以在区间上单调递增,在区间上单调递减.
所以在处取得极大值即最大值,最大值为.
所以当,即时, 的图象与轴恰有两个交点,
方程有两个实根,
当时,的图象与轴恰有一个交点,
方程有一个实根,
当时,的图象与轴无交点,
方程无实根. 12分
考点:1.利用导数判断函数的单调性;2.利用导数求函数的最值.
科目:高中数学 来源: 题型:解答题
对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.
(1)求证:函数是上的“型”函数;
(2)设是(1)中的“型”函数,若不等式对一切的恒成立,求实数的取值范围;
(3)若函数是区间上的“型”函数,求实数和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1) 当时,函数恒有意义,求实数a的取值范围;
(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米.记防洪堤横断面的腰长为(米),外周长(梯形的上底线段与两腰长的和)为(米).
⑴求关于的函数关系式,并指出其定义域;
⑵要使防洪堤横断面的外周长不超过米,则其腰长应在什么范围内?
⑶当防洪堤的腰长为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com