精英家教网 > 高中数学 > 题目详情

已知函数
(I)若不等式的解集为,求实数的值;
(II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.

(Ⅰ);(Ⅱ)的取值范围为(-∞,5].

解析试题分析:(Ⅰ)不等式的解集为,求实数a的值,首先解不等式,解得,利用解集为,从而求出的值;(Ⅱ)若对一切实数恒成立,转化为求的最小值,只要实数的取值小于或等于它的最小值,不等式对一切实数恒成立,故关键点是求的最小值,由(Ⅰ)知,故,设,于是,易求出最小值为5,则的取值范围为(-∞,5].
试题解析:(Ⅰ)由,解得.又已知不等式的解集为,所以,解得.
(Ⅱ)当时,,设,于是,所以当时,;  当时,;当时,.综上可得,的最小值为5.从而若,即对一切实数恒成立,则的取值范围为(-∞,5].
考点:本题考不等式的解法,考查学生数形结合的能力以及化归与转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数).
(1)求的单调区间;
(2)如果是曲线上的任意一点,若以为切点的切线的斜率恒成立,求实数的最小值;
(3)讨论关于的方程的实根情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)写出的奇偶性与单调性(不要求证明);
(2)若函数的定义域为,求满足不等式的实数的取值集合;
(3)当时,的值恒为负,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是同时符合以下性质的函数组成的集合:
,都有;②上是减函数.
(1)判断函数()是否属于集合,并简要说明理由;
(2)把(1)中你认为是集合中的一个函数记为,若不等式对任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,解不等式
(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求使不等式成立的的取值范围;
(Ⅱ),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 
(1)当,解不等式
(2)当时,若,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求函数的单调区间;
(Ⅱ)当时,函数恒成立,求实数的取值范围;
(Ⅲ)设正实数满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1)若,求的单调区间及的最小值;
(2)若,求的单调区间;
(3)试比较的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案