设
是同时符合以下性质的函数
组成的集合:
①
,都有
;②
在
上是减函数.
(1)判断函数
和
(
)是否属于集合
,并简要说明理由;
(2)把(1)中你认为是集合
中的一个函数记为
,若不等式
对任意的
总成立,求实数
的取值范围.
科目:高中数学 来源: 题型:解答题
扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为
(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为
平方米,且高度不低于
米.记防洪堤横断面的腰长为
(米),外周长(梯形的上底线段
与两腰长的和)为
(米).![]()
⑴求
关于
的函数关系式,并指出其定义域;
⑵要使防洪堤横断面的外周长不超过
米,则其腰长
应在什么范围内?
⑶当防洪堤的腰长
为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若
的定义域为
,值域为
,则称函数
是
上的“四维方军”函数.
(1)设
是
上的“四维方军”函数,求常数
的值;
(2)问是否存在常数
使函数
是区间
上的“四维方军”函数?若存在,求出
的值,否则,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com