设二次函数在区间上的最大值、最小值分别是,集合.
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.
科目:高中数学 来源: 题型:解答题
设是同时符合以下性质的函数组成的集合:
①,都有;②在上是减函数.
(1)判断函数和()是否属于集合,并简要说明理由;
(2)把(1)中你认为是集合中的一个函数记为,若不等式对任意的总成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数.
(1)在区间上画出函数的图象 ;
(2)设集合. 试判断集合和之间
的关系,并给出证明 ;
(3)当时,求证:在区间上,的图象位于函数图象的上方.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知.
(1)若a=0时,求函数在点(1,)处的切线方程;
(2)若函数在[1,2]上是减函数,求实数a的取值范围;
(3)令是否存在实数a,当是自然对数的底)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com