精英家教网 > 高中数学 > 题目详情

设二次函数在区间上的最大值、最小值分别是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.

 (Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)由方程的根求出函数解析式,再利用函数的单调性求出最值;(Ⅱ)由方程有两相等实根1,求出的关系式,消去得到含有参数函数解析式,进一步求出,再由的单调性求出最小值.
试题解析:(Ⅰ)由,可知           1分
,故1和2是方程的两实根,所以
      3分     解得,      4分
所以,
,即     5分
,即         6分
(Ⅱ)由题意知方程有两相等实根1,所以
,即,                     8分
所以,
其对称轴方程为
,故          9分
所以,          10分
            11分
         14分
单调递增,所以当时,    16分
考点:二次函数的解析式、二次函数在闭区间上的最值,函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图象分别与轴、轴交于两点,且,函数,当满足不等式,时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在区间上存在零点,求实数的取值范围;
(2)问:是否存在常数,当时,的值域为区间,且的长度为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)计算的值,据此提出一个猜想,并予以证明;
(2)证明:除点(2,2)外,函数的图像均在直线的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是同时符合以下性质的函数组成的集合:
,都有;②上是减函数.
(1)判断函数()是否属于集合,并简要说明理由;
(2)把(1)中你认为是集合中的一个函数记为,若不等式对任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)在区间上画出函数的图象 ;
(2)设集合. 试判断集合之间
的关系,并给出证明 ;
(3)当时,求证:在区间上,的图象位于函数图象的上方.
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求使不等式成立的的取值范围;
(Ⅱ),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在原点处的切线方程;
(Ⅱ)当时,讨论函数在区间上的单调性;
(Ⅲ)证明不等式对任意成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)若a=0时,求函数在点(1,)处的切线方程;
(2)若函数在[1,2]上是减函数,求实数a的取值范围;
(3)令是否存在实数a,当是自然对数的底)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案