已知函数
,
.
(I)求函数
的单调区间;
(Ⅱ)当
时,函数
恒成立,求实数
的取值范围;
(Ⅲ)设正实数
满足
,求证:
.
当
时,只有单调递增区间
;当
时,单调递增区间为
,
,单调递减区间为
.![]()
;
详见解析.
解析试题分析:
先求出
的导数,讨论
,利用导数的正负与函数单调性得关系求出单调区间;
当x>1时,函数f(x)>g(x)恒成立转化为
>0恒成立.结合第
问讨论的单调区间得出
的范围;
结合第
问,令
,
,所以
,再利用柯西不等式,
,其中由条件
.最后得证.
试题解析:(Ⅰ)易知
,定义域是
.
1分
由
的判别式![]()
①当
即
时,
恒成立,则
在
单调递增 2分
②当
时,
在
恒成立,则
在
单调递增 3分
③当
时,方程
的两正根为![]()
则
在
单调递增,
单调递减,
单调递增
综上,当
时,只有单调递增区间![]()
当
时,单调递增区间为
,![]()
单调递减区间为
5分
(Ⅱ)即
时,
恒成立
当
时,
在
单调递增 ∴当
时,
满足条件 7分
当
时,
在
单调递减
则
在
单调递减
此时
不满足条件
故实数
的取值范围为
9分
(Ⅲ)由(2)知,
在
恒成立
令
则
10分
∴
11分
又![]()
其中![]()
∴
&nb
科目:高中数学 来源: 题型:解答题
扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为
(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为
平方米,且高度不低于
米.记防洪堤横断面的腰长为
(米),外周长(梯形的上底线段
与两腰长的和)为
(米).![]()
⑴求
关于
的函数关系式,并指出其定义域;
⑵要使防洪堤横断面的外周长不超过
米,则其腰长
应在什么范围内?
⑶当防洪堤的腰长
为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数f(x)(x∈D),若x∈D时,恒有
>
成立,则称函数
是D上的J函数.
(Ⅰ)当函数f(x)=m
lnx是J函数时,求m的取值范围;
(Ⅱ)若函数g(x)为(0,+∞)上的J函数,
试比较g(a)与
g(1)的大小;
求证:对于任意大于1的实数x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com