已知函数,.
(I)求函数的单调区间;
(Ⅱ)当时,函数恒成立,求实数的取值范围;
(Ⅲ)设正实数满足,求证:.
当时,只有单调递增区间;当时,单调递增区间为,,单调递减区间为.;详见解析.
解析试题分析:先求出的导数,讨论,利用导数的正负与函数单调性得关系求出单调区间;当x>1时,函数f(x)>g(x)恒成立转化为>0恒成立.结合第问讨论的单调区间得出的范围;结合第问,令,,所以,再利用柯西不等式,,其中由条件.最后得证.
试题解析:(Ⅰ)易知,定义域是.
1分
由的判别式
①当即时,恒成立,则在单调递增 2分
②当时,在恒成立,则在单调递增 3分
③当时,方程的两正根为
则在单调递增,单调递减,单调递增
综上,当时,只有单调递增区间
当时,单调递增区间为,
单调递减区间为 5分
(Ⅱ)即时,恒成立
当时,在单调递增 ∴当时,满足条件 7分
当时,在单调递减
则在单调递减
此时不满足条件
故实数的取值范围为 9分
(Ⅲ)由(2)知,在恒成立
令 则 10分
∴ 11分
又
其中
∴ &nb
科目:高中数学 来源: 题型:解答题
扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米.记防洪堤横断面的腰长为(米),外周长(梯形的上底线段与两腰长的和)为(米).
⑴求关于的函数关系式,并指出其定义域;
⑵要使防洪堤横断面的外周长不超过米,则其腰长应在什么范围内?
⑶当防洪堤的腰长为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.
(Ⅰ)当函数f(x)=mlnx是J函数时,求m的取值范围;
(Ⅱ)若函数g(x)为(0,+∞)上的J函数,
试比较g(a)与g(1)的大小;
求证:对于任意大于1的实数x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com