精英家教网 > 高中数学 > 题目详情

已知函数是奇函数,且.
(1)求实数的值;
(2)判断函数上的单调性,并用定义加以证明.

(1),;(2) 上为增函数

解析试题分析:(1)由题意函数是奇函数可得,从而对应项相等可求得
(2)由函数单调性的定义判断即可.任取,设,作差后化积,判断符号即可.
试题解析:(1) 由题意函数是奇函数可得

因此,即,


(2)由(1)知,上为增函数
证明:设,则


上为增函数
考点:函数奇偶性的性质;函数单调性的判断与证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为实常数).
(1)若函数图像上动点到定点的距离的最小值为,求实数的值;
(2)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围;
(3)设,若不等式有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义域为[0,1]的函数同时满足以下三个条件时称为“友谊函数”:
(1)对任意的,总有≥0;
(2)
(3)若成立,则下列判断正确的有     .
(1)为“友谊函数”,则
(2)函数在区间[0,1]上是“友谊函数”;
(3)若为“友谊函数”,且0≤≤1,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.
(1)求证:函数上的“型”函数;
(2)设是(1)中的“型”函数,若不等式对一切的恒成立,求实数的取值范围;
(3)若函数是区间上的“型”函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义域为(a为实数),
(1)当时,求函数的值域。
(2)若函数在定义域上是减函数,求a的取值范围
(3)求函数上的最大值及最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是实数,设为该函数的图象上的两点,且.
⑴指出函数的单调区间;
⑵若函数的图象在点处的切线互相垂直,且,求的最小值;
⑶若函数的图象在点处的切线重合,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数为定义域上的单调函数,且存在区间(其中,使得当时, 的取值范围恰为,则称函数上的正函数,区间叫做函数的等域区间.
(1)已知上的正函数,求的等域区间;
(2)试探求是否存在,使得函数上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值
(2)判断并证明的单调性;
(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 当时,函数恒有意义,求实数a的取值范围;
(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案