精英家教网 > 高中数学 > 题目详情

若函数为定义域上的单调函数,且存在区间(其中,使得当时, 的取值范围恰为,则称函数上的正函数,区间叫做函数的等域区间.
(1)已知上的正函数,求的等域区间;
(2)试探求是否存在,使得函数上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.

(1);(2)存在,

解析试题分析:(1)因为上的正函数,根据正函数的定义建立方程组,解之可求出的等域区间;
(2)根据函数函数上的正函数建立方程组,消去,求出的取值范围,转化成关于的方程上有实数解进行求解.
试题解析:(1)
(2)假设存在,使得函数上的正函数,且此时函数在上单调递减
存在使得: (*)
两式相减得,代入上式:
即关于的方程上有解
方法①参变分离:即
,所以
实数的取值范围为
方法②实根分布:令,即函数的图像在内与轴有交点,,解得
方法③ :(*)式等价于方程上有两个不相等的实根
 
考点:函数的值域

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数  ().
(1)若为偶函数,求实数的值;
(2)已知,若对任意都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)若函数为奇函数,求实数的值;
(II)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,且.
(1)求实数的值;
(2)判断函数上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,是否存在,使为偶函数,如果存在,请举例并证明你的结论,如果不存在,请说明理由;
(2)若,求上的单调区间;
(3)已知,,有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,当时,
(1)求的函数解析式,并用分段函数的形式给出;
(2)作出函数的简图;
(3)写出函数的单调区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若且对任意实数均有成立,求的表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,函数
(1)当时,讨论的奇偶性;
(2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,画出函数的简图,并指出的单调递减区间;
(2)若函数有4个零点,求a的取值范围.

查看答案和解析>>

同步练习册答案