精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若,是否存在,使为偶函数,如果存在,请举例并证明你的结论,如果不存在,请说明理由;
(2)若,求上的单调区间;
(3)已知,,有成立,求的取值范围.

(1)存在,如;(2)函数的增区间为,减区间为
(3)实数的取值范围是.

解析试题分析:(1)直接举例并利用定义进行验证即可;(2)将代入函数的解析式,去绝对值符号,将函数的解析式利用分段函数的形式表示出来,然后利用导数求出函数在相应区间上的单调区间;(3)先将绝对值符号去掉,得到,并根据题中的意思将问题转化为,然后利用导数进行求解,从而求出参数的取值范围.
试题解析:(1)存在使为偶函数,证明如下:
此时:为偶函数,
(注:也可以
(2)
上为增函数,
,令
上为减函数,
上为增函数,
综上所述:的增区间为,减区间为
(3)
成立。
即:
时,为增函数或常数函数,
 
       
  
       
   
综上所述:.
考点:1.函数的奇偶性;2.函数的单调区间;3.全称命题与特称命题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若函数是定义在R上的偶函数,求a的值;
(Ⅱ)若不等式对任意恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)用定义证明上单调递增;
(2)若上的奇函数,求的值;
(3)若的值域为D,且,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义域为(a为实数),
(1)当时,求函数的值域。
(2)若函数在定义域上是减函数,求a的取值范围
(3)求函数上的最大值及最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:
(2)已知函数,求它的定义域和值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数为定义域上的单调函数,且存在区间(其中,使得当时, 的取值范围恰为,则称函数上的正函数,区间叫做函数的等域区间.
(1)已知上的正函数,求的等域区间;
(2)试探求是否存在,使得函数上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)定义运算 若函数.
(1)求的解析式;
(2)画出的图像,并指出单调区间、值域以及奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题p:关于x的不等式,对一切恒成立;命题q:函是增函数.若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若存在,使不等式成立,求实数的取值范围;
(2)设,证明:

查看答案和解析>>

同步练习册答案