精英家教网 > 高中数学 > 题目详情

命题p:关于x的不等式,对一切恒成立;命题q:函是增函数.若p或q为真,p且q为假,求实数a的取值范围.

解析试题分析:先根据不等式恒成立问题以及二次函数的图像与性质求出为真时的的取值范围,再根据指数函数的图像与性质求出为真时的的取值范围.根据已知条件“为真,为假”可知,一真一假,那么分别求出“假”和“真”情况下的的取值范围,两种情况下的的取值范围取并集即可.
试题解析:为真:,解得;               2分
为真:,解得.                        4分
为真,为假,∴一真一假.           6分
假时,   ;          8分
真时,  .             10分
的取值范围为.                        12分
考点:1.命题的真假判断及应用;2.不等式恒成立问题;3.二次函数的图像与性质;4.指数函数的图像与性质;5.解不等式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求函数的定义域;
(2)若函数的定义域为R,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,是否存在,使为偶函数,如果存在,请举例并证明你的结论,如果不存在,请说明理由;
(2)若,求上的单调区间;
(3)已知,,有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若且对任意实数均有成立,求的表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知奇函数

(1)求实数的值,并在给出的直角坐标系中画出的图象;
(2)若函数在区间上单调递增,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,函数
(1)当时,讨论的奇偶性;
(2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数恒过定点 (3,2).
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式;
(3)对于定义在[1,9]的函数,若在其定义域内,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数对任意满足,若当时,),且
(1)求实数的值;
(2)求函数的值域.

查看答案和解析>>

同步练习册答案