精英家教网 > 高中数学 > 题目详情

已知函数对任意满足,若当时,),且
(1)求实数的值;
(2)求函数的值域.

(1);(2)

解析试题分析:(1)先由题意知,是奇函数且周期为2,再利用,利用;(2)由(1),当时,,由为奇函数知当时,,再写出的表达式,最后求的值域.
试题解析:(1)由题意知,是奇函数且周期为2,所以 
 
(2)当时,,由为奇函数知当时,时,
考点:1.函数的奇偶性;2.函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

命题p:关于x的不等式,对一切恒成立;命题q:函是增函数.若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若存在,使不等式成立,求实数的取值范围;
(2)设,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,且时,,函数的值域为集合.
(I)求的值;
(II)设函数的定义域为集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义在R上的奇函数,对任意实数成立.
(1)证明是周期函数,并指出其周期;
(2)若,求的值;
(3)若,且是偶函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义域为的奇函数.
(Ⅰ)求的值;
(Ⅱ)若,且上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是同时符合以下性质的函数组成的集合:
,都有;②上是减函数.
(1)判断函数()是否属于集合,并简要说明理由;
(2)把(1)中你认为是集合中的一个函数记为,若不等式对任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数同时满足以下条件:①函数上是减函数,在上是增函数;②是偶函数;③函数处的切线与直线垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,若存在使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1.  
(1)求直线的方程及的值;
(2)若(其中的导函数),求函数的最大值;
(3)当时,求证:

查看答案和解析>>

同步练习册答案