精英家教网 > 高中数学 > 题目详情

设函数  ().
(1)若为偶函数,求实数的值;
(2)已知,若对任意都有恒成立,求实数的取值范围.

(1)0;(2)

解析试题分析:(1)根据偶函数定义,得到,平方后可根据对应系数相等得到a的值,也可将上式两边平方得恒成立,得a的值。(2)应先去掉绝对值将其改写为分段函数,在每段上求函数时的最小值,在每段求最值时都属于定轴动区间问题,需讨论。最后比较这两个最小值的大小取最小的那个,即为原函数的最小值。要使恒成立,只需的最小值大于等于1即可,从而求得a的范围
试题解析:(1)若的为偶函数,则
,

两边平方得,展开
时,为偶函数。
(2)

①求,即的最小值:


②求,即的最小值
,
比较,的大小:
,故
恒成立”即为“)”
,解得
考点:奇偶性,恒成立问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的定义域为.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求证:是定值;
(2)判断并说明有最大值还是最小值,并求出此最大值或最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求方程的根;
(2)若函数满足,求函数在的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实常数).
(1)若函数图像上动点到定点的距离的最小值为,求实数的值;
(2)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围;
(3)设,若不等式有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若函数是定义在R上的偶函数,求a的值;
(Ⅱ)若不等式对任意恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.
(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知增函数是定义在(-1,1)上的奇函数,其中,a为正整数,且满足.
⑴求函数的解析式;
⑵求满足的范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义域为[0,1]的函数同时满足以下三个条件时称为“友谊函数”:
(1)对任意的,总有≥0;
(2)
(3)若成立,则下列判断正确的有     .
(1)为“友谊函数”,则
(2)函数在区间[0,1]上是“友谊函数”;
(3)若为“友谊函数”,且0≤≤1,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数为定义域上的单调函数,且存在区间(其中,使得当时, 的取值范围恰为,则称函数上的正函数,区间叫做函数的等域区间.
(1)已知上的正函数,求的等域区间;
(2)试探求是否存在,使得函数上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案