已知增函数是定义在(-1,1)上的奇函数,其中,a为正整数,且满足.
⑴求函数的解析式;
⑵求满足的的范围;
(1);(2)
解析试题分析:(1)由函数是定义在上的奇函数,则有,可求得,此时,又有,则有,即,又为正整数,所以,从而可求出函数的解析式;(2)由(1)可知,可知函数在定义域内为单调递增(可用定义法证明:①在其定义域内任取两个自变量、,且;②作差(或作商)比较与的大小;③得出结论,即若则为单调递增函数,若则为单调递减函数),又不等式且为奇函数,所以不等式可化为,从而有,可求出的范围.
试题解析:(1)因为是定义在上的奇函数
所以,解得 2分
则,由,得,又为正整数
所以,故所求函数的解析式为 5分
(2)由(1)可知且在上为单调递增函数
由不等式,又函数是定义在上的奇函数
所以有, 8分
从而有 10分
解得 12分
考点:1.函数解析式、奇偶性、单调性;2.不等式.
科目:高中数学 来源: 题型:解答题
定义:对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为定义域上的“局部奇函数”?若是,求出满足的的值;若不是,请说明理由;
(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(3)若为定义域上的“局部奇函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设二次函数,对任意实数,有恒成立;数列满足.
(1)求函数的解析式和值域;
(2)证明:当时,数列在该区间上是递增数列;
(3)已知,是否存在非零整数,使得对任意,都有
恒成立,若存在,求之;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,,为常数
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整数,使得对于任意均成立,若存在,求出 的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com