精英家教网 > 高中数学 > 题目详情

已知函数的定义域为.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求证:是定值;
(2)判断并说明有最大值还是最小值,并求出此最大值或最小值.

(1)详见解析;(2)有最小值2

解析试题分析:(1)设点P的坐标为,则有,用点到线的距离公式求,问题即可得证。(2)用基本不等式可求得的最小值。
试题解析:解答:(1)证明:设点P的坐标为,则有,  2分
由点到直线的距离公式可知,       4分
故有,即为定值,这个值为1.             6分
(2)有最小值,且最小值为2.                 7分
∵由(1)知,              8分
,                   10分
当且仅当点在时,有最小值2.   12分
考点:1点到线的距离公式,2基本不等式。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ex-e-x(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2bxc(bc∈R),对任意的x∈R,恒有f′(x)≤f(x).
(1)证明:当x≥0时,f(x)≤(xc)2
(2)若对满足题设条件的任意bc,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=a为常数且a∈(0,1).
(1)当a=时,求f
(2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=loga(x+1)(a>1),若函数yg(x)的图象上任意一点P关于原点对称的点Q的轨迹恰好是函数f(x)的图象.
(1)写出函数g(x)的解析式;
(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,当时,.
(1)求
(2)求的解析式;
(3)若,求区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当,函数有且仅有一个零点,且时,求的值;
(Ⅱ)若函数在区间上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数  ().
(1)若为偶函数,求实数的值;
(2)已知,若对任意都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+ax+b的两个零点是-2和3,解不等式bf(ax)>0;

查看答案和解析>>

同步练习册答案