Èçͼ£¬Ô²OÓëÖ±Ïßx+
3
y+2=0ÏàÇÐÓÚµãP£¬ÓëxÕý°ëÖá½»ÓÚµãA£¬ÓëÖ±Ïßy=
3
xÔÚµÚÒ»ÏóÏ޵Ľ»µãΪB£®µãCΪԲOÉÏÈÎÒ»µã£¬ÇÒÂú×ã
OC
=x
OA
+y
OB
£¬¶¯µãD£¨x£¬y£©µÄ¹ì¼£¼ÇΪÇúÏߦ££®
£¨1£©ÇóÔ²OµÄ·½³Ì¼°ÇúÏߦ£µÄ¹ì¼£·½³Ì£»
£¨2£©ÈôÖ±Ïßy=xºÍy=-x·Ö±ð½»ÇúÏߦ£ÓÚµãA¡¢CºÍB¡¢D£¬ÇóËıßÐÎABCDµÄÖܳ¤£»
£¨3£©ÒÑÖªÇúÏߦ£ÎªÍÖÔ²£¬Ð´³öÍÖÔ²¦£µÄ¶Ô³ÆÖá¡¢¶¥µã×ø±ê¡¢·¶Î§ºÍ½¹µã×ø±ê£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©Çó³öÔ²OµÄ°ë¾¶£¬Ð´³öÔ²OµÄ·½³Ì£¬ÀûÓÃ
OC
=x
OA
+y
OB
£¬Çó³öÇúÏߦ£µÄ·½³Ì£®
£¨2£©ÀûÓÃÖ±ÏßÓëÇúÏß·½³ÌÁªÁ¢£¬
y=x
x2+y2+xy=1
£¬Çó³öA£¬C£¬B£¬D£¬È»ºóÇó³öËıßÐÎABCDµÄÖܳ¤£®
£¨3£©ÉèÇúÏߦ£ÉÏÈÎÒ»µãµÄ×ø±êΪP£¨x0£¬y0£©£¬µãP¹ØÓÚÖ±Ïßy=xµÄ¶Ô³ÆµãΪP1£¨y0£¬x0£©£¬ËµÃ÷µãP1ÔÚÇúÏߦ£ÉÏ£¬¹ÊÇúÏߦ£¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬ÇúÏߦ£¹ØÓÚÖ±Ïßy=-xºÍÔ­µã¶Ô³Æ£®Çó³öx2+y2+xy=1ºÍÖ±Ïßy=-xµÄ½»µã×ø±êΪA1£¬A2£¬Çó½â¼´¿É£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÒâÔ²OµÄ°ë¾¶r=
2
12+(
3
)
2
=1
£¬
¹ÊÔ²OµÄ·½³ÌΪx2+y2=1£®¡­£¨2·Ö£©
ÓÉ
OC
=x
OA
+y
OB
µÃ£¬
OC
2
=(x
OA
+y
OB
)2
£¬
¼´
OC
2
=x2
OA
2
+y2
OB
2
+2xy|
OA
||
OB
|cos60¡ã
£¬
µÃx2+y2+xy=1£¨x£¬y¡Ê[-
2
3
3
£¬
2
3
3
]
£©ÎªÇúÏߦ£µÄ·½³Ì£®£¨Î´Ð´x£¬y·¶Î§²»¿Û·Ö£©¡­£¨4·Ö£©
£¨2£©ÓÉ
y=x
x2+y2+xy=1
½âµÃ£º
x=
3
3
y=
3
3
»ò
x=-
3
3
y=-
3
3
£¬
ËùÒÔ£¬A£¨
3
3
£¬
3
3
£©£¬C£¨-
3
3
£¬-
3
3
£©
ͬÀí£¬¿ÉÇóµÃB£¨1£¬-1£©£¬D£¨-1£¬1£©
ËùÒÔ£¬ËıßÐÎABCDµÄÖܳ¤Îª£º
17
9

£¨3£©ÇúÏߦ£µÄ·½³ÌΪx2+y2+xy=1£¨x£¬y¡Ê[-
2
3
3
£¬
2
3
3
]
£©£¬
Ëü¹ØÓÚÖ±Ïßy=x¡¢y=-xºÍÔ­µã¶Ô³Æ£¬ÏÂÃæÖ¤Ã÷£º
ÉèÇúÏߦ£ÉÏÈÎÒ»µãµÄ×ø±êΪP£¨x0£¬y0£©£¬Ôòx02+y02+x0y0=1£¬
µãP¹ØÓÚÖ±Ïßy=xµÄ¶Ô³ÆµãΪP1£¨y0£¬x0£©£¬ÏÔÈ»y02+x02+y0x0=1£¬
ËùÒÔµãP1ÔÚÇúÏߦ£ÉÏ£¬¹ÊÇúÏߦ£¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬
ͬÀíÇúÏߦ£¹ØÓÚÖ±Ïßy=-xºÍÔ­µã¶Ô³Æ£®
¿ÉÒÔÇóµÃx2+y2+xy=1ºÍÖ±Ïßy=xµÄ½»µã×ø±êΪB1(-
3
3
£¬-
3
3
)£¬B2(
3
3
£¬
3
3
)
£¬
x2+y2+xy=1ºÍÖ±Ïßy=-xµÄ½»µã×ø±êΪA1£¨-1£¬1£©£¬A2£¨1£¬-1£©£¬
¡à|OA1|=
2
£¬|OB1|=
6
3
£¬¡à
|OA1|2-|OB1|2
=
2
3
3
£¬
¡à
|OA1|2-|OB1|2
2
=
6
3
£®
ÔÚy=-xÉÏÈ¡µãF1(-
6
3
£¬
6
3
)£¬F2(
6
3
£¬-
6
3
)
£®
ÇúÏߦ£ÎªÍÖÔ²£º
Æä½¹µã×ø±êΪF1(-
6
3
£¬
6
3
)£¬F2(
6
3
£¬-
6
3
)
£®
µãÆÀ£º±¾Ì⿼²éÔ²µÄ·½³ÌÒÔ¼°ÇúÏ߹켣·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Óã¬ÍÖÔ²µÄ»ù±¾ÖªÊ¶µÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪˫ÇúÏßC£º
x2
a2
-
y2
b2
=1(a£¬b£¾0)
µÄÒ»Ìõ½¥½üÏß·½³ÌÊÇy=
1
2
x
£¬ËüµÄÒ»¸ö½¹µãÔÚÅ×ÎïÏßy2=4
5
x
µÄ×¼ÏßÉÏ£¬µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇË«ÇúÏßCÓÒÖ§ÉÏÏàÒìÁ½µã£¬ÇÒÂú×ãx1+x2=6£¬DΪÏß¶ÎABµÄÖе㣬ֱÏßABµÄбÂÊΪk£®
£¨¢ñ£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨¢ò£©ÓÃk±íʾµãDµÄ×ø±ê£»
£¨¢ó£©Èôk£¾0£¬ABµÄÖд¹Ïß½»xÖáÓÚµãM£¬Ö±ÏßAB½»xÖáÓÚµãN£¬Çó¡÷DMNµÄÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏM={x|x£¼1}£¬¼¯ºÏN={y|y£¾0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
A¡¢{x|x£¼1}
B¡¢{x|x£¾1}
C¡¢{x|0£¼x£¼1}
D¡¢∅

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èç¹ûÖ±Ïß3x-
3
y+m=0ÓëË«ÇúÏßC£º
x2
a2
-
y2
b2
=1£¨a£¾0£¬b£¾0£©ºãÓÐÁ½¸ö¹«¹²µã£¬ÔòË«ÇúÏßCµÄÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢£¨1£¬2£©
B¡¢£¨2£¬+¡Þ£©
C¡¢£¨1£¬2]
D¡¢[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÄÜʹÊäÈëµÄxÖµÓëÊä³öµÄyÖµÏàµÈµÄxÖµ¸öÊýΪ£¨¡¡¡¡£©
A¡¢1B¡¢2C¡¢3D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÖ±Ïßl1£ºy=4x+m£¬£¨m£¼0£©ÓëÅ×ÎïÏßC1£ºy=2ax2£¬(a£¾0)ºÍÔ²C2£ºx2+(y+1)2=17¶¼ÏàÇУ¬FÊÇÅ×ÎïÏßC1µÄ½¹µã£®
£¨¢ñ£©ÇómÓëaµÄÖµ£»
£¨¢ò£©ÉèAÊÇC1ÉϵÄÒ»¶¯µã£¬ÒÔAΪÇеã×÷Å×ÎïÏßC1µÄÇÐÏßl£¬Ö±Ïßl½»yÖáÓÚµãB£¬ÒÔFA£¬FBΪÁÚ±ß×÷ƽÐÐËıßÐÎFAMB£¬Ö¤Ã÷£ºµãMÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬¼ÇµãMËùÔڵֱ͍ÏßΪl2£¬Ö±Ïßl2ÓëyÖá½»µãΪN£¬Á¬½ÓMF½»Å×ÎïÏßC1ÓÚP£¬QÁ½µã£¬Çó¡÷NPQµÄÃæ»ýSµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¹ýµãP£¨2£¬-1£©µÄÖ±Ïßl½»ÍÖÔ²
x 2
8
+
y 2
4
=1
ÓÚM¡¢NÁ½µã£¬B£¨0£¬2£©ÊÇÍÖÔ²µÄÒ»¸ö¶¥µã£¬ÈôÏß¶ÎMNµÄÖеãǡΪµãP£®
£¨¢ñ£©ÇóÖ±ÏßlµÄ·½³Ì£»
£¨¢ò£©Çó¡÷BMNµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Çóy=
x
1+x2
µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Å×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬Å×ÎïÏßCÉϵãMµÄºá×ø±êΪ2£¬ÇÒ|MF|=3£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©¹ý½¹µãF×÷Á½ÌõÏ໥´¹Ö±µÄÖ±Ïߣ¬·Ö±ðÓëÅ×ÎïÏßC½»ÓÚM¡¢NºÍP¡¢QËĵ㣬ÇóËıßÐÎMPNQÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸