精英家教网 > 高中数学 > 题目详情
9.将曲线C:y=sin(2x+$\frac{π}{6}$)向左平移θ(θ>0)个单位长度,得到的曲线E的一个对称中心为$(\frac{π}{6},0)$,则θ的最小值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{12}$C.$\frac{π}{3}$D.$\frac{π}{4}$

分析 根据曲线C向左平移θ个单位长度得到曲线E,写出E的解析式,
再根据E的一个对称中心求出θ的解析式,从而求出θ的最小值.

解答 解:曲线C:y=sin(2x+$\frac{π}{6}$)向左平移θ(θ>0)个单位长度,
得到曲线E:y=sin[2(x+θ)+$\frac{π}{6}$]=sin(2x+2θ+$\frac{π}{6}$),
又E的一个对称中心为$(\frac{π}{6},0)$,
∴2×$\frac{π}{6}$+2θ+$\frac{π}{6}$=kπ,k∈Z,
解得θ=$\frac{kπ}{2}$-$\frac{π}{4}$,k∈Z;
又θ>0,∴θ的最小值是$\frac{π}{4}$.
故选:D.

点评 本题考查了函数y=Asin(ωx+φ)的图象和性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.水平放置的△ABC的斜二测直观图如图所示,若A1C1=2,△ABC的面积为2$\sqrt{2}$,则A1B1的长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知随机变量ξ的分布列为P(ξ=k)=$\frac{1}{3}$,k=1,2,3.则D(2ξ+3)等于(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)={sin^2}x+2\sqrt{3}sinxcosx+3{cos^2}x-1$
(Ⅰ)求函数f(x)的单调减区间;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{6}$个单位长度得到函数g(x)的图象,求g(x)在区间$[{0,\frac{π}{2}}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列A:a1,a2,a3,a4,a5,其中ai∈{-1,0,1},i=1,2,3,4,5,则满足条件:a1+a2+a3+a4+a5=3的不同数列A一共有15个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设定义域为R的函数f(x)满足f(x+1)=$\frac{1}{2}$+$\sqrt{f(x)-[f(x)]^{2}}$,且$f(-1)=\frac{1}{2}$,则f(2017)的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量,$\overrightarrow{a}$=(cosx,$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}sinx$,cos2x),x∈R设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(X)的单调增区间
(Ⅲ)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案