精英家教网 > 高中数学 > 题目详情
18.设定义域为R的函数f(x)满足f(x+1)=$\frac{1}{2}$+$\sqrt{f(x)-[f(x)]^{2}}$,且$f(-1)=\frac{1}{2}$,则f(2017)的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2017

分析 令x=-1,得f(0)=$\frac{1}{2}+\sqrt{\frac{1}{2}-(\frac{1}{2})^{2}}$=1,令x=0,得f(1)=$\frac{1}{2}+\sqrt{1-{1}^{2}}$=$\frac{1}{2}$,令x=1,得f(2)=$\frac{1}{2}+\sqrt{\frac{1}{2}-(\frac{1}{2})^{2}}$=1,由此利用函数的周期性能求出结果.

解答 解:∵定义域为R的函数f(x)满足f(x+1)=$\frac{1}{2}$+$\sqrt{f(x)-[f(x)]^{2}}$,且$f(-1)=\frac{1}{2}$,
∴令x=-1,得f(0)=$\frac{1}{2}+\sqrt{\frac{1}{2}-(\frac{1}{2})^{2}}$=1,
令x=0,得f(1)=$\frac{1}{2}+\sqrt{1-{1}^{2}}$=$\frac{1}{2}$,
令x=1,得f(2)=$\frac{1}{2}+\sqrt{\frac{1}{2}-(\frac{1}{2})^{2}}$=1,

∴f(2017)=f(1)=$\frac{1}{2}$.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$sin2ωx+2cos2ωx-1(其中0<ω<1),若点(-$\frac{π}{6}$,0)是函数f(x)图象的一个对称中心.
(1)试求ω的值;
(2)先列表,再作出函数f(x)在区间x∈[-π,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将曲线C:y=sin(2x+$\frac{π}{6}$)向左平移θ(θ>0)个单位长度,得到的曲线E的一个对称中心为$(\frac{π}{6},0)$,则θ的最小值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{12}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在的直线方程,以及该边上的高线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)求值:2cos215°
(2)化简:$\frac{1}{2}cosx-\frac{{\sqrt{3}}}{2}sinx$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)的图象如图所示,设函数$g(x)={log_{\sqrt{2}}}f(x)$,则函数g(x+1)的定义域是(1,7].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角α终边一点P(-2,3),则tanα的值为(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知AB⊥平面BCE,CD||AB,△BCE是正三角形,AB=BC=2CD.
(1)求证:平面ADE⊥平面ABE;
(2)求二面角A-DE-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,记A1F与平面BCC1B1所成的角为θ,下列说法正确的是个数是(  )
①点F的轨迹是一条线段;
②A1F与D1E不可能平行;
③A1F与BE是异面直线;
④$tanθ≤2\sqrt{2}$;
⑤当F与C1不重合时,平面A1FC1不可能与平面AED1平行.
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案