(本小题14分)
已知函数的图像在[a,b]上连续不断,定义:
,,其中表示函数在D上的最小值,表示函数在D上的最大值,若存在最小正整数k,使得对任意的成立,则称函数为上的“k阶收缩函数”
(1)若,试写出,的表达式;
(2)已知函数试判断是否为[-1,4]上的“k阶收缩函数”,
如果是,求出对应的k,如果不是,请说明理由;
已知,函数是[0,b]上的2阶收缩函数,求b的取值范围
解:(1)由题意可得:,。
(2),,
当时,
当时,
当时,
综上所述,。
即存在,使得是[-1,4]上的“4阶收缩函数”。
(3),令得或。
函数的变化情况如下:
x |
0 |
2 |
|||
- |
0 |
+ |
0 |
- |
|
0 |
4 |
令得或。
(i)当时,在上单调递增,因此,,。因为是上的“二阶收缩函数”,所以,
①对恒成立;
②存在,使得成立。
①即:对恒成立,由解得或。
要使对恒成立,需且只需。
②即:存在,使得成立。
由解得或。
所以,只需。
综合①②可得。
(i i)当时,在上单调递增,在上单调递减,
因此,,,,
显然当时,不成立。
(i i i)当时,在上单调递增,在上单调递减,因此,,,,
显然当时,不成立。
综合(i)(i i)(i i i)可得:
【解析】略
科目:高中数学 来源:2011届北京市东城区示范校高三第二学期综合练习数学文卷 题型:解答题
(本小题14分)已知函数.
(1)若,点P为曲线上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数在上为单调增函数,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2015届陕西省高一上学期期中考试数学试卷(解析版) 题型:解答题
(本小题14分)已知二次函数满足:,,且该函数的最小值为1.
⑴ 求此二次函数的解析式;
⑵ 若函数的定义域为= .(其中). 问是否存在这样的两个实数,使得函数的值域也为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江西省协作体高三第三次联考文科数学试卷(解析版) 题型:解答题
(本小题14分)已知函数
(Ⅰ)若且函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围;
(Ⅲ)求证:,…….
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期第一次调研考试数学试卷(实验班) 题型:解答题
(本小题14分)已知函数f(x)=,x∈[1,+∞
(1)当a=时,求函数f(x)的最小值
(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围
(3)求f(x)的最小值
查看答案和解析>>
科目:高中数学 来源:2010-2011年福建省四地六校高二下学期第一次月考数学理卷 题型:解答题
(本小题14分)
已知函数.
(Ⅰ)若,求曲线在处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com