(本小题14分)已知函数
(Ⅰ)若且函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围;
(Ⅲ)求证:,…….
(Ⅰ);(Ⅱ) ;(Ⅲ)见解析。
【解析】本试题主要是考查了导数在研究函数中的运用。求解函数的极值,和不等式的恒成立问题,以及证明不等式。
解:(Ⅰ)因为, x 0,则,
求解导数,判定函数单调性,得到极值。
因为函数在区间(其中)上存在极值,
得到参数k的范围。
(Ⅱ)不等式,又,则 ,构造新函数,则
令,则,
分析单调性得到证明。
(Ⅲ)由(2)知:当时,恒成立,即,,
令 ,则;可以证明。
解:(Ⅰ)因为, x 0,则,
当时,;当时,.
所以在(0,1)上单调递增;在上单调递减,
所以函数在处取得极大值;……….2分
因为函数在区间(其中)上存在极值,
所以 解得;……….4分
(Ⅱ)不等式,又,则 ,,则;……….6分
令,则,
,在上单调递增,,
从而, 故在上也单调递增, 所以,
所以. ;……….8分
(Ⅲ)由(2)知:当时,恒成立,即,,
令 ,则;……….10分
所以 ,,……
,
n个不等式相加得
即……….14分
科目:高中数学 来源:2012-2013学年北京市高三第四次月考文科数学试卷(解析版) 题型:解答题
(本小题14分)
已知等比数列满足,且是,的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,,求使 成立的正整数的最小值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年四川省成都市高新区高三2月月考理科数学试卷(解析版 题型:解答题
(本小题14分)已知函数,设。
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值。
(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说名理由。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年陕西省高三上学期月考理科数学 题型:解答题
(本小题14分)已知函数的图像与函数的图像关于点
对称
(1)求函数的解析式;
(2)若,在区间上的值不小于6,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年四川省高三2月月考数学理卷 题型:解答题
(本小题14分)
已知函数的图像在[a,b]上连续不断,定义:
,,其中表示函数在D上的最小值,表示函数在D上的最大值,若存在最小正整数k,使得对任意的成立,则称函数为上的“k阶收缩函数”
(1)若,试写出,的表达式;
(2)已知函数试判断是否为[-1,4]上的“k阶收缩函数”,
如果是,求出对应的k,如果不是,请说明理由;
已知,函数是[0,b]上的2阶收缩函数,求b的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com