【题目】如图,在直三棱柱中,,为棱的中点,.
(1)证明:平面;
(2)设二面角的正切值为,,为线段上一点,且与平面所成角的正弦值为,求.
【答案】(1)见解析;(2)或..
【解析】试题分析:(1)证明线面平行只需在面内找一线与已知线平行即可,通常构建三角形中位线或者平行四边形,根据题意我们可以取的中点,连接,∵侧面为平行四边形,∴为的中点,∴,又,∴,
∴四边形为平行四边形,则.进而得出结论(2)先求出二面角,过作于,连接,则即为二面角的平面角.然后建立空间直角坐标系求出面ABD的法向量和斜线CE的坐标,根据向量夹角公式得出等式即可求解.
解析:(1)证明:取的中点,连接,
∵侧面为平行四边形,∴为的中点,
∴,又,∴,
∴四边形为平行四边形,则.
∵平面,平面,∴平面.
(2)解:过作于,连接,
则即为二面角的平面角.
∵,,∴.
又,,∴.
以为原点,建立空间直角坐标系,如图所示,则,,,,
则,,设平面的法向量,
则,即,令,得.
设,∵,∴ ,
∴与平面所成角的正弦值为 ,
∴,∴或,即或.
科目:高中数学 来源: 题型:
【题目】设函数 ,.
(1)当时,求曲线在处的切线方程;
(2)求函数在上的最小值(为自然对数的底数);
(3)是否存在实数,使得对任意正实数均成立?若存在,求出所有满足条件的实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从2017年1月18日开始,支付宝用户可以通过“扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福、敬业福),除夕夜22:18,每一位提前集齐五福的用户都将获得一份现金红包.某高校一个社团在年后开学后随机调查了80位该校在读大学生,就除夕夜22:18之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:
是 | 否 | 合计 | |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合计 | 65 | 15 | 80 |
(1)根据如上的列联表,能否在犯错误的概率不超过0.05的前提下,认为“集齐五福与性别有关”?
(2)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;
(3)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.
参考公式: .
附表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在R上的偶函数,当时, .
(1)求的解析式;并画出简图;
(2)利用图象讨论方程的根的情况。(只需写出结果,不要解答过程).
(3)若直线与函数的图像自左向右依次交于四个不同点 A,B,C,D .若AB=BC,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.
(1)写出第一次服药后,y与t之间的函数关系式y=f(t);
(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足
(1)将利润表示为产量万台的函数;
(2)当产量为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:,圆:,直线:与抛物线相切于点,与圆相切于点.
(1)若直线的斜率,求直线和抛物线的方程;
(2)设为抛物线的焦点,设,的面积分别为,,若,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com