精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱为棱的中点,.

(1)证明:平面

(2)设二面角的正切值为为线段上一点,且与平面所成角的正弦值为,求.

【答案】(1)见解析;(2)..

【解析】试题分析:(1)证明线面平行只需在面内找一线与已知线平行即可,通常构建三角形中位线或者平行四边形,根据题意我们可以取的中点,连接,∵侧面为平行四边形,∴的中点,∴,又,∴

∴四边形为平行四边形,则.进而得出结论(2)先求出二面角,过,连接,则即为二面角的平面角.然后建立空间直角坐标系求出面ABD的法向量和斜线CE的坐标,根据向量夹角公式得出等式即可求解.

解析:(1)证明:取的中点,连接

∵侧面为平行四边形,∴的中点,

,又,∴

∴四边形为平行四边形,则.

平面平面,∴平面.

(2)解:过,连接

即为二面角的平面角.

,∴.

,∴.

为原点,建立空间直角坐标系,如图所示,则

,设平面的法向量

,即,令,得.

,∵,∴

与平面所成角的正弦值为

,∴,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若将判断框内“”改为关于的不等式“”且要求输出的结果不变,则正整数的取值是

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1)当时,求曲线处的切线方程;

(2)求函数上的最小值(为自然对数的底数);

(3)是否存在实数,使得对任意正实数均成立?若存在,求出所有满足条件的实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2017年1月18日开始,支付宝用户可以通过“扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福、敬业福),除夕夜22:18,每一位提前集齐五福的用户都将获得一份现金红包.某高校一个社团在年后开学后随机调查了80位该校在读大学生,就除夕夜22:18之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:

合计

30

10

40

35

5

40

合计

65

15

80

(1)根据如上的列联表,能否在犯错误的概率不超过0.05的前提下,认为“集齐五福与性别有关”?

(2)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;

(3)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.

参考公式: .

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在R上的偶函数,, .

1)求的解析式;并画出简图;

2)利用图象讨论方程的根的情况。(只需写出结果,不要解答过程)

3)若直线与函数的图像自左向右依次交于四个不同点 A,B,C,D .AB=BC,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把[0,1]内的均匀随机数x分别转化为[0,2]和内的均匀随机数y1,y2,需实施的变换分别为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(1)写出第一次服药后,y与t之间的函数关系式y=f(t);

(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足

1)将利润表示为产量万台的函数;

2)当产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆,直线与抛物线相切于点,与圆相切于点.

(1)若直线的斜率,求直线和抛物线的方程;

(2)设为抛物线的焦点,设的面积分别为,若,求的取值范围.

查看答案和解析>>

同步练习册答案