精英家教网 > 高中数学 > 题目详情

【题目】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(1)写出第一次服药后,y与t之间的函数关系式y=f(t);

(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?

【答案】(1) ; (2)服药一次后治疗有效的时间是5-小时.

【解析】

(1)由函数图象的奥这是一个分段函数,第一段为正比例函数的一段,第二段是指数函数的一段,由于两端函数均过点,代入点的坐标,求出参数的值,即可得到函数的解析式;

(2)由(1)的结论将函数值代入函数的解析式,构造不等式,求出每毫升血液中函数不少于微克的起始时刻和结束时刻,即可得到结论.

(1)由题意,根据给定的函数的图象,可设函数的解析式为

又由函数的图象经过点

则当时,,解得

又由时,解得

所以函数的解析式为.

(2)由题意,令,即当时,,解得

时,,解得

综上所述,可得实数的取值范围是

所以服药一次后治疗有效的时间是小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是平行四边形所在平面外一点如果.(1)求证:是平面的法向量

(2)求平行四边形的面积.

【答案】(1)证明见解析;(2).

【解析】试题分析:

(1)由题意结合空间向量数量积的运算法则计算可得.结合线面垂直的判断定理可得平面是平面的法向量.

(2)利用平面向量的坐标计算可得.

试题解析:

(1)

.

,又平面

是平面的法向量.

(2)

.

型】解答
束】
19

【题目】(1)求圆心在直线且与直线相切于点的圆的方程

(2)求与圆外切于点且半径为的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,且分别为线段的中点,沿折起,使,得到如下的立体图形.

(1)证明:平面平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了确保神舟飞船发射时的信息安全,信息须加密传输,发送方由明文密文(加密),接受方由密文明文(解密),已知加密的方法是:密码把英文的明文(真实文)按字母分解,其中英文的abcz26个字母(不论大小写)依次对应1232626个自然数(见下表):

a

b

c

d

e

f

g

h

i

j

k

l

m

1

2

3

4

5

6

7

8

9

10

11

12

13

n

o

p

q

r

s

t

u

v

w

x

y

z

14

15

16

17

18

19

20

21

22

23

24

25

26

通过变换公式:,将明文转换成密文,如,即h变换成q,即e变换成c.若按上述规定,若将明文译成的密文是shxc,那么原来的明文是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河南濮阳市高三一模已知点在抛物线 是抛物线上异于的两点,以为直径的圆过点

I证明:直线过定点;

II过点作直线的垂线,求垂足的轨迹方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元,2000元.甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工一件甲所需工时分别为1,2,加工一件乙设备所需工时分别为2,1.A、B两种设备每月有效使用台时数分别为400和500,分别用表示计划每月生产甲,乙产品的件数.

(Ⅰ)用列出满足生产条件的数学关系式,并画出相应的平面区域;

(Ⅱ)问分别生产甲、乙两种产品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面为直角梯形,底面 的中点.

(1)证明:平面平面

(2)求夹角的余弦值;

(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程是是参数),圆的极坐标方程为.

(Ⅰ)求圆心的直角坐标;

(Ⅱ)由直线上的点向圆引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1)已知的解集为,求实数的值;

2)已知,设是关于的方程的两根,且,求实数的值;

3)已知满足,且关于的方程的两实数根分别在区间内,求实数的取值范围.

查看答案和解析>>

同步练习册答案