精英家教网 > 高中数学 > 题目详情

【题目】已知点是平行四边形所在平面外一点如果.(1)求证:是平面的法向量

(2)求平行四边形的面积.

【答案】(1)证明见解析;(2).

【解析】试题分析:

(1)由题意结合空间向量数量积的运算法则计算可得.结合线面垂直的判断定理可得平面是平面的法向量.

(2)利用平面向量的坐标计算可得.

试题解析:

(1)

.

,又平面

是平面的法向量.

(2)

.

型】解答
束】
19

【题目】(1)求圆心在直线且与直线相切于点的圆的方程

(2)求与圆外切于点且半径为的圆的方程.

【答案】(1)(2).

【解析】试题分析:

(1)由题意可得圆的一条直径所在的直线方程为据此可得圆心,半径则所求圆的方程为.

(2)圆的标准方程为,得该圆圆心为,半径为,两圆连心线斜率.设所求圆心为结合弦长公式可得.则圆的方程为.

试题解析:

(1)过点且与直线垂直的直线为

.

即圆心,半径

所求圆的方程为.

(2)圆方程化为,得该圆圆心为,半径为,故两圆连心线斜率.设所求圆心为

.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列满足在直线上.

1)求数列的通项公式;

(2),求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )

A. 甲和乙不可能同时获奖 B. 丙和丁不可能同时获奖

C. 乙和丁不可能同时获奖 D. 丁和甲不可能同时获奖

【答案】C

【解析】若甲乙丙同时获奖,则甲丙的话错,乙丁的话对;符合题意;

若甲乙丁同时获奖,则乙的话错,甲丙丁的话对;不合题意;

若甲丙丁同时获奖,则丙丁的话错,甲乙的话对;符合题意;;

若丙乙丁同时获奖,则甲乙丙的话错,丁的话对;不合题意;

因此乙和丁不可能同时获奖,选C.

型】单选题
束】
12

【题目】已知当时,关于的方程有唯一实数解,则值所在的范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)

将学生日均课外体育运动时间在上的学生评价为“课外体育达标”.

平均每天锻炼的时间(分钟)

总人数

20

36

44

50

40

10

请根据上述表格中的统计数据填写下面列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关?

课外体育不达标

课外体育达标

合计

20

110

合计

从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某镇在政府精准扶贫的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M、养鸡的收益N与投入a(单位:万元)满足Na+20.设甲合作社的投入为x(单位:万元),两个合作社的总收益为fx)(单位:万元).

1)当甲合作社的投入为25万元时,求两个合作社的总收益;

2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求圆心在直线且与直线相切于点的圆的方程

(2)求与圆外切于点且半径为的圆的方程.

【答案】(1)(2).

【解析】试题分析:

(1)由题意可得圆的一条直径所在的直线方程为据此可得圆心,半径则所求圆的方程为.

(2)圆的标准方程为,得该圆圆心为,半径为,两圆连心线斜率.设所求圆心为结合弦长公式可得.则圆的方程为.

试题解析:

(1)过点且与直线垂直的直线为

.

即圆心,半径

所求圆的方程为.

(2)圆方程化为,得该圆圆心为,半径为,故两圆连心线斜率.设所求圆心为

.

.

点睛:求圆的方程,主要有两种方法:

(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.

(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.

型】解答
束】
20

【题目】如图所示,平面在以为直径的为线段的中点在弧.

(1)求证:平面平面

(2)求证:平面平面

(3)设二面角的大小为的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图三棱柱中,侧面为菱形,.

(Ⅰ)证明:

(Ⅱ)若AB=BC,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数).

1)若,写出的单调递增区间(直接写结果)

2)若,设在区间的最小值为,求的表达式;

3)设,若函数在区间上是增函数,求实数的取值范围.

参考结论:函数为常数),时,上递增;时,上递减,上递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(1)写出第一次服药后,y与t之间的函数关系式y=f(t);

(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?

查看答案和解析>>

同步练习册答案