精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=$\sqrt{a{x^2}+bx+c}$(a,b,c∈R)的定义域和值域分别为A,B,若集合{(x,y)|x∈A,y∈B}对应的平面区域是正方形区域,则实数a,b,c满足(  )
A.|a|=4B.a=-4且b2+16c>0C.a<0且b2+4ac≤0D.以上说法都不对

分析 设y=ax2+bx+c与x轴相交于两点(x1,0),(x2,0),a<0.可得|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{\sqrt{{b}^{2}-4ac}}{-a}$.由题意可得:$\left\{\begin{array}{l}{a<0}\\{△={b}^{2}-4ac>0}\\{|{x}_{1}-{x}_{2}|=\sqrt{\frac{4ac-{b}^{2}}{4a}}}\end{array}\right.$,化简即可得出.

解答 解:设y=ax2+bx+c与x轴相交于两点(x1,0),(x2,0),a<0.
则${x}_{1}+{x}_{2}=-\frac{b}{a}$,x1x2=$\frac{c}{a}$.
∴|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{(-\frac{b}{a})^{2}-\frac{4c}{a}}$=$\frac{\sqrt{{b}^{2}-4ac}}{-a}$.
由题意可得:$\left\{\begin{array}{l}{a<0}\\{△={b}^{2}-4ac>0}\\{|{x}_{1}-{x}_{2}|=\sqrt{\frac{4ac-{b}^{2}}{4a}}}\end{array}\right.$,
由$\sqrt{\frac{4ac-{b}^{2}}{4a}}$=$\frac{\sqrt{{b}^{2}-4ac}}{-a}$,解得a=-4.
∴实数a,b,c满足a=-4,△=b2+16c>0,
故选:B.

点评 本题考查了二次函数的性质、一元二次方程的实数根与判别式的关系及其根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.化简:$\frac{sin(270°-α)}{cos(180°+α)}$+$\frac{cos(450°+α)}{sin(-180°-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:
甲电商:
消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]
频数50200350300100
乙电商:
消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]
频数250300150100200
(Ⅰ)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);

(Ⅱ)
(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;
(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X,试求出X的期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在区间(0,$\frac{π}{2}$)上的函数y=6cosx与y=5tanx的图象交点为P,过点P作x轴的垂线,垂足为P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长度为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{3}{4}$D.$\frac{\sqrt{7}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.关于统计数据的分析,有以下几个结论:
①将一组数据中的每个数据都减去同一个数后,方差没有变化;
②绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
③一组数据的方差一定是正数;
④如图是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在(50,60)的汽车大约是60辆.
则这4种说法中错误的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若复数z=$\frac{{{{(1-i)}^2}}}{1+i}$,则|z|=(  )
A.8B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设x、y、z是两两不等的实数,且满足下列等式:$\root{6}{{x^3{(y-x)}^3}}+\root{6}{{x^3{(z-x)}^3}}=\root{6}{y-x}-\root{6}{x-z}$,则代数式x3+y3+z3-3xyz的值是(  )
A.0B.1
C.3D.条件不足,无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数x,y满足$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=$\sqrt{{x}^{2}+{y}^{2}}$的最大值是(  )
A.$\sqrt{43}$B.$\frac{5\sqrt{2}}{2}$C.$\sqrt{73}$D.3$\sqrt{2}$

查看答案和解析>>

同步练习册答案