精英家教网 > 高中数学 > 题目详情
8.若复数z=$\frac{{{{(1-i)}^2}}}{1+i}$,则|z|=(  )
A.8B.2$\sqrt{2}$C.2D.$\sqrt{2}$

分析 直接利用复数的模的运算法则化简求解即可.

解答 解:复数z=$\frac{{{{(1-i)}^2}}}{1+i}$,则|z|=$|\frac{-2i}{1+i}|$=$\frac{2}{\sqrt{1+1}}$=$\sqrt{2}$.
故选:D.

点评 本题考查复数的模的求法,复数的基本运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若sinα=$\frac{3}{5}$,则
①sin(180°-α)=$\frac{3}{5}$;
②sin(π+α)=-$\frac{3}{5}$;
③sin(-α)=-$\frac{3}{5}$;
④sin(7π-α)=$\frac{3}{5}$;
⑤cos(90°-α)=$\frac{3}{5}$;
⑥cos($\frac{π}{2}$+α)=-$\frac{3}{5}$;
⑦cos($\frac{3π}{2}$+α)=$\frac{3}{5}$;
⑧cos(270°-α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={y|y=2x-1,x∈R},B={x|x2-x-2<0},则(  )
A.-1∈AB.$\sqrt{3}$∉BC.A∩(∁RB)=AD.A∪B=A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\sqrt{a{x^2}+bx+c}$(a,b,c∈R)的定义域和值域分别为A,B,若集合{(x,y)|x∈A,y∈B}对应的平面区域是正方形区域,则实数a,b,c满足(  )
A.|a|=4B.a=-4且b2+16c>0C.a<0且b2+4ac≤0D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某程序框图如图所示,则执行该程序框图输出的结果是(  )
A.$\frac{1}{2}$B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=x2+bx+1满足f(-x)=f(x+1),若存在实数t,使得对任意实数x∈[l,m],都有f(x+t)≤x成立,则实数m的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.先阅读参考材料,再解决此问题:
参考材料:求抛物线弧y=x2(0≤x≤2)与x轴及直线x=2围成的封闭图形的面积
解:把区间[0,2]进行n等分,得n-1个分点A($\frac{2i}{n}$,0)(i=1,2,3,…,n-1),过分点Ai,作x轴的垂线,交抛物线于Bi,并如图构造n-1个矩形,先求出n-1个矩形的面积和Sn-1,再求$\underset{lim}{n→∞}$Sn-1,即是封闭图形的面积,又每个矩形的宽为$\frac{2}{n}$,第i个矩形的高为($\frac{2i}{n}$)2,所以第i个矩形的面积为$\frac{2}{n}$•($\frac{2i}{n}$)2
Sn-1=$\frac{2}{n}$[$\frac{4•{1}^{2}}{{n}^{2}}$+$\frac{4•{2}^{2}}{{n}^{2}}$+$\frac{4•{3}^{2}}{{n}^{2}}$+…+$\frac{4•(n-1)^{2}}{{n}^{2}}$]=$\frac{8}{{n}^{3}}$[12+22+32+…+(n-1)2]=$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$
所以封闭图形的面积为$\underset{lim}{n→∞}$$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$=$\frac{8}{3}$
阅读以上材料,并解决此问题:已知对任意大于4的正整数n,不等式$\sqrt{1-\frac{{1}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{2}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{3}^{2}}{{n}^{2}}}$+…+$\sqrt{1-\frac{(n-1)^{2}}{{n}^{2}}}$<an恒成立,则实数a的取值范围为[$\frac{π}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+2cosx+a的最小值是1,则a的值为$1+\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数列{an}中,a1=1,an+1•an=an-an+1
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=lg$\frac{{a}_{n+2}}{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案