精英家教网 > 高中数学 > 题目详情
19.已知集合A={y|y=2x-1,x∈R},B={x|x2-x-2<0},则(  )
A.-1∈AB.$\sqrt{3}$∉BC.A∩(∁RB)=AD.A∪B=A

分析 化简集合A、B,即可得出结论A∪B=A.

解答 解:∵A={y|y=2x-1,x∈R}={y|y>-1}=(-1,+∞),
B={x|x2-x-2<0}={x|-1<x<2}=(-1,2);
∴A∪B=A.
故选:D.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.计算:i+2i2+3i3+…+50i50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}中,a1=$\frac{1}{3}$,a4=$\frac{1}{81}$.
(1)Sn为{an}的前n项和,证明:2Sn+an=1;
(2)设bn=log3a1+log3a2+…+log3an,求数列{$\frac{1}{{b}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:
甲电商:
消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]
频数50200350300100
乙电商:
消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]
频数250300150100200
(Ⅰ)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);

(Ⅱ)
(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;
(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X,试求出X的期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某地区交通执法部门从某日上午9时开始对经过当地的200名车辆驾驶人员驾驶的车辆进行超速测试并分组,并根据测速的数据制作了频率分布图:
组号超速分组频数频率频率
组距
1[0,20%]1760.88z
2[20%,40%]120.060.0030
3[40%,60%]6y0.0015
4[60%,80%]40.020.0010
5[80%,100%]x0.010.0005
(1)求z,y,x的值;
(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名驾驶人员做回访调查,并在这12名驾驶人员中任意选3人,这3人中超速在[20%,80%)内的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在区间(0,$\frac{π}{2}$)上的函数y=6cosx与y=5tanx的图象交点为P,过点P作x轴的垂线,垂足为P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长度为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{3}{4}$D.$\frac{\sqrt{7}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若复数z=$\frac{{{{(1-i)}^2}}}{1+i}$,则|z|=(  )
A.8B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知命题P:“若x2+y2>2,则|x|>1或|y|>1”;命题P的否定:¬p:若x2+y2>2,则|x|≤1且|y|≤1.

查看答案和解析>>

同步练习册答案