精英家教网 > 高中数学 > 题目详情
5.设x、y、z是两两不等的实数,且满足下列等式:$\root{6}{{x^3{(y-x)}^3}}+\root{6}{{x^3{(z-x)}^3}}=\root{6}{y-x}-\root{6}{x-z}$,则代数式x3+y3+z3-3xyz的值是(  )
A.0B.1
C.3D.条件不足,无法计算

分析 由x3(y-x)3≥0,x3(z-x)3≥0,y-x≥0,x-z≥0,可得:y=x=z=0,代入即可得出.

解答 解:由x3(y-x)3≥0,x3(z-x)3≥0,y-x≥0,x-z≥0,
可得:y=x=z=0,
∴代数式x3+y3+z3-3xyz=0,
故选:A.

点评 本题考查了函数的定义域、不等式的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知平面内A,B两点的坐标分别为(2,2),(0,-2),O为坐标原点,动点P满足|$\overrightarrow{BP}$|=1,则|$\overrightarrow{OA}+\overrightarrow{OP}$|的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\sqrt{a{x^2}+bx+c}$(a,b,c∈R)的定义域和值域分别为A,B,若集合{(x,y)|x∈A,y∈B}对应的平面区域是正方形区域,则实数a,b,c满足(  )
A.|a|=4B.a=-4且b2+16c>0C.a<0且b2+4ac≤0D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=x2+bx+1满足f(-x)=f(x+1),若存在实数t,使得对任意实数x∈[l,m],都有f(x+t)≤x成立,则实数m的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.先阅读参考材料,再解决此问题:
参考材料:求抛物线弧y=x2(0≤x≤2)与x轴及直线x=2围成的封闭图形的面积
解:把区间[0,2]进行n等分,得n-1个分点A($\frac{2i}{n}$,0)(i=1,2,3,…,n-1),过分点Ai,作x轴的垂线,交抛物线于Bi,并如图构造n-1个矩形,先求出n-1个矩形的面积和Sn-1,再求$\underset{lim}{n→∞}$Sn-1,即是封闭图形的面积,又每个矩形的宽为$\frac{2}{n}$,第i个矩形的高为($\frac{2i}{n}$)2,所以第i个矩形的面积为$\frac{2}{n}$•($\frac{2i}{n}$)2
Sn-1=$\frac{2}{n}$[$\frac{4•{1}^{2}}{{n}^{2}}$+$\frac{4•{2}^{2}}{{n}^{2}}$+$\frac{4•{3}^{2}}{{n}^{2}}$+…+$\frac{4•(n-1)^{2}}{{n}^{2}}$]=$\frac{8}{{n}^{3}}$[12+22+32+…+(n-1)2]=$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$
所以封闭图形的面积为$\underset{lim}{n→∞}$$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$=$\frac{8}{3}$
阅读以上材料,并解决此问题:已知对任意大于4的正整数n,不等式$\sqrt{1-\frac{{1}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{2}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{3}^{2}}{{n}^{2}}}$+…+$\sqrt{1-\frac{(n-1)^{2}}{{n}^{2}}}$<an恒成立,则实数a的取值范围为[$\frac{π}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+2cosx+a的最小值是1,则a的值为$1+\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),求f(-2008)+f(2009)的值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,已知0是?ABCD对角线的交点,给出下列结论:
①$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{BC}$,
②$\overrightarrow{AB}$+$\overrightarrow{CB}$=$\overrightarrow{AC}$,
③$\overrightarrow{AO}$$+\overrightarrow{OB}$=$\overrightarrow{AB}$;
④$\overrightarrow{CB}$$+\overrightarrow{CD}$=$\overrightarrow{CA}$,
⑤$\overrightarrow{AO}$$+\overrightarrow{CO}$=$\overrightarrow{DO}$$+\overrightarrow{BO}$,
其中正确的结论是③④⑤.(填序号)

查看答案和解析>>

同步练习册答案