精英家教网 > 高中数学 > 题目详情
已知椭圆,过点且离心率为.
求椭圆的方程;
已知是椭圆的左右顶点,动点满足,连接角椭圆于点,在轴上是否存在异于点的定点,使得以为直径的圆经过直线和直线的交点,若存在,求出点,若不存在,说明理由.
(1);(2)存在,

试题分析:(1)由离心率,所以①,再把点代入椭圆中得:②,最后③,由①②③三式求出,即可写出椭圆方程;
假设存在,设,则直线的方程, 可得, 并设定点,由题目得:,直线与直线斜率之积为-1,即 ,化简得 ,又因为 ,得,可求出,继而得到定点点坐标.
(1)由题意得
 得 ,                   
所以,椭圆方程为      
(2)设,则直线的方程,  
可得
设定点
,即 ,
        
又因为, 所以
进而求得,故定点为.            
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直线与抛物线交于两点A、B,如果弦的长度.
⑴求的值;
⑵求证:(O为原点)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,在第一和第四象限的交点分别为.
(1)若是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,分别是椭圆的左、右焦点,过点的直线交椭圆两点,
(1)若的周长为16,求
(2)若,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程mx2+y2=1所表示的所有可能的曲线是(  )
A.椭圆、双曲线、圆
B.椭圆、双曲线、抛物线
C.两条直线、椭圆、圆、双曲线
D.两条直线、椭圆、圆、双曲线、抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
A.2B.3C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程的曲线即为函数的图象,对于函数,下列命题中正确的是.(请写出所有正确命题的序号)
①函数上是单调递减函数;②函数的值域是
③函数的图象不经过第一象限;④函数的图象关于直线对称;
⑤函数至少存在一个零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上且过点P,离心率是.
(1)求椭圆C的标准方程;
(2)直线l过点E (-1,0)且与椭圆C交于AB两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

同步练习册答案