精英家教网 > 高中数学 > 题目详情
19.以括号的形式给出正整数的排列形式如下:
(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),…据此规律,第100个括号里面的第1个数是(  )
A.4949B.4950C.4951D.4952

分析 根据题意可知第一组一个数,第二组2个数,第三组3个数,所以第99组是99个数,求出所有数的和,然后求解结果.

解答 解:根据题意所有数组成等差数列,第一组一个数,第二组2个数,第三组3个数,
所以第99组是99个数,前99组共有:1+2+3+4+5+…+99=4950,
第100个括号里面的第1个数是4951.
故选:C.

点评 通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=sinax-cosax(a>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次成等差数列,且公差为π.
(1)求函数y=f(x)的解析式;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,若$f(\frac{B}{2})=\sqrt{2}$,且a、b、c成等比数列,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=|log4x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m,n的值分别为(  )
A.$\frac{1}{2}$,2B.$\frac{1}{4}$,4C.$\frac{1}{4}$,2D.$\frac{1}{2}$,4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,sinA+cosA=$\frac{1}{5}$.
(Ⅰ)求sin2A;
(Ⅱ)判断△ABC是锐角三角形还是钝角三角形;
(Ⅲ)求tanA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=-lnx+t(x-1),t为实数.
(1)当t=1时,求函数f(x)的单调区间;
(2)若当t=$\frac{1}{2}$时,$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆E过点A(1,-1),B(-1,1),且圆心E在直线l:x+y-2=0上,直线l′与直线l关于原点对称,过直线l′上点P向圆E引两条切线PM,PN,切点分别为M,N.
(Ⅰ)求圆E的方程;
(Ⅱ)求证:直线MN恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)…,则第15个整数对是(  )
A.(5,1)B.(4,2)C.(6,1)D.(5,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2lnx+x2-a2x(x>0,a∈R).
(Ⅰ)是否存在实数a,使f(1)是f(x)的极小值?若存在,求出a的值;若不存在,请说明理由.
(Ⅱ)当a>0时,若函数f(x)在[1,2]上单调递减,求a的最小值;
(Ⅲ)当a=$\sqrt{5}$时,f(x)在区间(k-$\frac{1}{2}$,k)上为单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在底面是菱形的四棱柱ABCD-A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=2$\sqrt{2}$,点E在A1D上.
(1)证明:AA1⊥面ABCD.
(2)当$\frac{{A}_{1}E}{ED}$为何值时,A1B∥平面EAC,并求出此时直线A1B与平面EAC之间的距离.

查看答案和解析>>

同步练习册答案