精英家教网 > 高中数学 > 题目详情
11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)…,则第15个整数对是(  )
A.(5,1)B.(4,2)C.(6,1)D.(5,2)

分析 按规律分组:第一组(1,1);第二组(1,2),(2,1);第三组(1,3),(2,2),(3,1);…则前5组共有1+2+3+4+5=15个有序实数对.第15项应在第5组中最后一个,然后分析这些点的分布规律,然后归纳推断出,点的排列规律,再求出第15个数对.

解答 解:按规律分组:第一组(1,1);第二组(1,2),(2,1);
第三组(1,3),(2,2),(3,1);…则前5组共有1+2+3+4+5=15个有序实数对.
第15项应在第5组中,即(1,5),(2,4),(3,3),(4,2),(5,1)中的第5个,
因此第15项为(5,1).
故选:A.

点评 本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.以坐标原点为极点x轴的正半轴为极轴建立极坐标系,已知曲线${C_1}:{(x-2)^2}+{y^2}=4$,点A的极坐标为$(3\sqrt{2},\frac{π}{4})$,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=a$,且点A在直线l上.
(1)求曲线C1的极坐标方程和直线l的直角坐标方程;
(2)设l向左平移6个单位后得到l′,l′与C1的交点为M,N,求l′的极坐标方程及|MN|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{3}$sinθ.
(I)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)在圆C上求一点D,使它到直线l的距离最短,并求出点D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以括号的形式给出正整数的排列形式如下:
(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),…据此规律,第100个括号里面的第1个数是(  )
A.4949B.4950C.4951D.4952

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合P={a|2kπ≤a≤2kπ+π,k∈Z},Q={a|-4≤a≤4},则P∩Q=[-4,-π]∪[0,π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求关于x的不等式m2x+2>2mx+m的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于任意实数x,不等式mx2+mx+4>0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.无限循环小数为有理数,如:0.$\stackrel{•}{1}$=$\frac{1}{9}$,0.$\stackrel{•}{2}$=$\frac{2}{9}$,0.$\stackrel{•}{3}$=$\frac{1}{3}$,…,则可归纳出0.$\stackrel{•}{4}$$\stackrel{•}{5}$=(  )
A.$\frac{1}{2}$B.$\frac{5}{110}$C.$\frac{1}{20}$D.$\frac{5}{11}$

查看答案和解析>>

同步练习册答案