精英家教网 > 高中数学 > 题目详情
15.一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为$\frac{5}{3}$.

分析 由三视图得纸盒是正四面体,由正视图和俯视图得求出正四面体的棱长,由题意得小正四面体的外接球是纸盒的内切球,利用“设正四面体的棱长为a,则内切球的半径为$\frac{\sqrt{6}}{12}$a,外接球的半径是$\frac{\sqrt{6}}{4}$a,列出方程求出小正四面体的棱长的最大值.

解答 解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,
∴小正四面体的外接球是纸盒的内切球,
设正四面体的棱长为a,则内切球的半径为$\frac{\sqrt{6}}{12}$a,外接球的半径是$\frac{\sqrt{6}}{4}$a,
∴纸盒的内切球半径是$\frac{\sqrt{6}}{12}×5$=$\frac{5\sqrt{6}}{12}$,
设小正四面体的棱长是x,则$\frac{5\sqrt{6}}{12}$=$\frac{\sqrt{6}}{4}$x,解得x=$\frac{5}{3}$,
∴小正四面体的棱长的最大值为$\frac{5}{3}$,
故答案为:$\frac{5}{3}$.

点评 本题考查正四面体的三视图,正四面体的棱长与内切球的半径、外接球的半径关系式的应用,牢记结论是解题的关键,考查空间想象能力,转化思想,计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=|log4x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m,n的值分别为(  )
A.$\frac{1}{2}$,2B.$\frac{1}{4}$,4C.$\frac{1}{4}$,2D.$\frac{1}{2}$,4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)…,则第15个整数对是(  )
A.(5,1)B.(4,2)C.(6,1)D.(5,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2lnx+x2-a2x(x>0,a∈R).
(Ⅰ)是否存在实数a,使f(1)是f(x)的极小值?若存在,求出a的值;若不存在,请说明理由.
(Ⅱ)当a>0时,若函数f(x)在[1,2]上单调递减,求a的最小值;
(Ⅲ)当a=$\sqrt{5}$时,f(x)在区间(k-$\frac{1}{2}$,k)上为单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|x-b|-alnx,其中a、b均为非负实数.
(1)当b>0时,若函数f(x)在x=b处取得极小值,证明:0≤a≤b.
(2)若对?a∈[$\frac{1}{e}$,e],不等式f(x)≥0恒成立,求实数b的值;
(3)若?a∈(0,+∞),使得方程f(a)=b2-l有解,试求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,平面ABC⊥平面α,D为线段AB的中点,$|{AB}|=2\sqrt{2}$,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为$\sqrt{2}$,则∠APB的最大值为90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.根据下列各图中三角形的个数,推断第20个图中三角形的个数是(  )
A.231B.200C.210D.190

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在底面是菱形的四棱柱ABCD-A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=2$\sqrt{2}$,点E在A1D上.
(1)证明:AA1⊥面ABCD.
(2)当$\frac{{A}_{1}E}{ED}$为何值时,A1B∥平面EAC,并求出此时直线A1B与平面EAC之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.判断函数f(x)=x+$\frac{1}{x}$(x>0)的单调性,并运用单调性定义予以证明.

查看答案和解析>>

同步练习册答案