精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=-lnx+t(x-1),t为实数.
(1)当t=1时,求函数f(x)的单调区间;
(2)若当t=$\frac{1}{2}$时,$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,求实数k的取值范围.

分析 (1)求导函数,利用导数大于0,求函数的单调增区间,导数小于0,求函数的单调减区间;
(2)当t=$\frac{1}{2}$时,$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,可得k<-xlnx+$\frac{1}{2}{x}^{2}$在(1,+∞)上恒成立,利用导数确定单调性,求出最值,即可求实数k的取值范围.

解答 解:(1)当t=1时,f(x)=-ln x+(x-1),f′(x)=-$\frac{1}{x}$+1,
令f′(x)=0,∴x=1,∵x∈(0,+∞)
故函数f(x)的单调减区间为(0,1),单调增区间为(1,+∞);
(2)当t=$\frac{1}{2}$时,$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,
可得k<-xlnx+$\frac{1}{2}{x}^{2}$在(1,+∞)上恒成立,
令y=-xlnx+$\frac{1}{2}{x}^{2}$,则y′=-lnx-1+x,
y″=-$\frac{1}{x}$+1>0,∴y′在(1,+∞)上单调递增,
∴y′>-ln1-1+1=0,
∴y在(1,+∞)上单调递增,
∴y>$\frac{1}{2}$,
∴k≤$\frac{1}{2}$.

点评 本题以函数为载体,考查导数的运用,考查利用导数求函数的单调区间,同时考查了函数最值的运用,有一定的综合性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(-ax2-2x+a)•ex(a∈R).
(1)当a=-2时,求函数f(x)的极值;
(2)若f(x)在[-1,1]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx+$\frac{1}{2}$.
(1)求f(x)的对称中心和对称轴方程;
(2)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{3}$sinθ.
(I)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)在圆C上求一点D,使它到直线l的距离最短,并求出点D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在集合A上的函数f(x)=log2(x-1)+log2(2x+1),其值域为(-∞,1],则A=$(1,\frac{3}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以括号的形式给出正整数的排列形式如下:
(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),…据此规律,第100个括号里面的第1个数是(  )
A.4949B.4950C.4951D.4952

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合P={a|2kπ≤a≤2kπ+π,k∈Z},Q={a|-4≤a≤4},则P∩Q=[-4,-π]∪[0,π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于任意实数x,不等式mx2+mx+4>0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=|x-1|+|x+1|,(x∈R)
(1)求证:f(x)≥2;
(2)若不等式f(x)≥$\frac{|2b+1|-|1-b|}{|b|}$对任意非零实数b恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案