£¨1£©ÒÑÖªº¯Êýf£¨x£©=-x2+4£¨x¡Ê£¨-1£¬2£©£©£¬P¡¢QÊÇf£¨x£©Í¼ÏóÉϵÄÈÎÒâÁ½µã£®
¢ÙÊÔÇóÖ±ÏßPQµÄбÂÊkPQµÄÈ¡Öµ·¶Î§£»
¢ÚÇóf£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄ·¶Î§£»
£¨2£©ÓÉ£¨1£©ÄãÄܵóöʲô½áÂÛ£¿£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬ÊÔÔËÓÃÕâ¸ö½áÂÛ½â´ðÏÂÃæµÄÎÊÌ⣺ÒÑÖª¼¯ºÏMDÊÇÂú×ãÏÂÁÐÐÔÖʺ¯Êýf£¨x£©µÄÈ«Ì壺Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪD£¬¶ÔÈÎÒâµÄx1£¬x2¡ÊD£¬£¨x1¡Ùx2£©ÓÐ|f£¨x1£©-f£¨x2£©|£¼|x1-x2|£®
¢Ùµ±D=£¨0£¬1£©Ê±£¬f£¨x£©=lnxÊÇ·ñÊôÓÚMD£¬ÈôÊôÓÚMD£¬¸øÓèÖ¤Ã÷£¬·ñÔò˵Ã÷ÀíÓÉ£»
¢Úµ±£¬º¯Êýf£¨x£©=x3+ax+bʱ£¬Èôf£¨x£©¡ÊMD£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¢ÙÉèP£¨x1£¬f£¨x1£©£©£¬Q£¨x2£¬f£¨x2£©£©ÓÉбÂʹ«Ê½ÓÃÁ½µã×ø±ê±íʾ³ö£¬ÔÙ¸ù¾Ý¶¨ÒåÓòÇó·¶Î§£®
¢ÚÇó³öµ¼º¯ÊýµÄÖµÓò£¬¼´Îª¸îÏßµÄбÂʵÄÈ¡Öµ·¶Î§£®
£¨2£©µÃ³ö½áÂÛ£¬º¯Êýy=f£¨x£©Í¼ÏóÉÏÈÎÒâÁ½µãP¡¢QÁ¬ÏßµÄбÂʵÄÈ¡Öµ·¶Î§£¬
¾ÍÊÇÇúÏßÉÏÈÎÒ»µãÇÐÏßµÄбÂÊ£¨Èç¹ûÓеĻ°£©µÄ·¶Î§£»¶ÔÓÚ¢Ù½â³öµ¼º¯Êý£¬µ±x¡Ê£¨0£¬1£©£¬µ¼Êý´óÓÚ1£¬ÓÉ£¨1£©µÄ½áÂÛ£¬ÕâÓë|f£¨x1£©-f£¨x2£©|£¼|x1-x2|ì¶Ü£¬f£¨x£©=lnx∉MD£®¶ÔÓÚ¢Ú½â³öµ¼º¯ÊýÓɶ¨ÒåÓòÖªa£¼f¡ä£¨x£©£¼1+a£®Èôf£¨x£©¡ÊMD£¬Ôò¿É¸ù¾Ý¶¨ÒåµÃ³ö¹ØÓÚaµÄ²»µÈʽ×飬½âÖ®£¬Óнâ¼ÈµÃʵÊýaµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©=1 ¢ÙÉèP£¨x1£¬f£¨x1£©£©£¬Q£¨x2£¬f£¨x2£©£©ÊÇf£¨x£©Í¼ÏóÉϵÄÈÎÒâÁ½µã£¨x1¡Ùx2£©£¬Ôò£¬
ÓÉx1£¬x2¡Ê£¨-1£¬2£©£¬Öª-£¨x1+x2£©¡Ê£¨-4£¬2£©£¬
¡àÖ±ÏßPQµÄбÂÊkPQµÄÈ¡Öµ·¶Î§ÊÇ£¨-4£¬2£©£»
¢ÚÓÉf¡ä£¨x£©=-2x£¬x¡Ê£¨-1£¬2£©£¬µÃf¡ä£¨x£©¡Ê£¨-4£¬2£©£¬
¡àf£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄ·¶Î§ÊÇ£¨-4£¬2£©£»
£¨2£©ÓÉ£¨1£©µÃ£ºº¯Êýy=f£¨x£©Í¼ÏóÉÏÈÎÒâÁ½µãP¡¢QÁ¬ÏßµÄбÂʵÄÈ¡Öµ·¶Î§£¬
¾ÍÊÇÇúÏßÉÏÈÎÒ»µãÇÐÏßµÄбÂÊ£¨Èç¹ûÓеĻ°£©µÄ·¶Î§£¨ÆäʵÓɵ¼ÊýµÄ¶¨Òå¿ÉµÃ£©£®
¢Ù¡ß£¬¡àÈôx¡Ê£¨0£¬1£©£¬f¡ä£¨x£©£¾1⇒|f¡ä£¨x£©|£¾1£¬
¡à£¬µ±x1£¬x2¡Ê£¨0£¬1£©Ê±£¬f£¨x£©=lnx∉MD£®
¢ÚÓÉf£¨x£©=x3+ax+b⇒f¡ä£¨x£©=3x2+a£¬µ±Ê±£¬
a£¼f¡ä£¨x£©£¼1+a£®¡ßf£¨x£©¡ÊMD£¬
¡à£¬
¡à£¬µÃ-1¡Üa¡Ü0£®
¡àʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ[-1£¬0]£®
µãÆÀ£º¿¼²éº¯ÊýͼÏóÉÏÁ½µãÁ¬ÏßµÄбÂÊÓ뺯ÊýÔÚÕâÒ»¶ÎÉϵĵ¼ÊýµÄÖµÓòµÄ¹Øϵ£¬¶ÔÓÚµÚ£¨II£©ÎÊ£¬ÆäÖТÙÅжϸú¯ÊýÊÇ·ñ·ûºÏ¶¨Ò壬Æä¢ÚÊǸù¾Ýº¯Êý·ûºÏ¶¨Òåת»¯³É²»µÈʽ×éÇó²ÎÊý£®Çë¶ÁÕßÈÏÕæÌå»áÕâÁ½¸öÌâÐ͵Äͬͬ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖªº¯Êýf£¨x£©=-x2+4£¨x¡Ê£¨-1£¬2£©£©£¬P¡¢QÊÇf£¨x£©Í¼ÏóÉϵÄÈÎÒâÁ½µã£®
¢ÙÊÔÇóÖ±ÏßPQµÄбÂÊkPQµÄÈ¡Öµ·¶Î§£»
¢ÚÇóf£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄ·¶Î§£»
£¨2£©ÓÉ£¨1£©ÄãÄܵóöʲô½áÂÛ£¿£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬ÊÔÔËÓÃÕâ¸ö½áÂÛ½â´ðÏÂÃæµÄÎÊÌ⣺ÒÑÖª¼¯ºÏMDÊÇÂú×ãÏÂÁÐÐÔÖʺ¯Êýf£¨x£©µÄÈ«Ì壺Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪD£¬¶ÔÈÎÒâµÄx1£¬x2¡ÊD£¬£¨x1¡Ùx2£©ÓÐ|f£¨x1£©-f£¨x2£©|£¼|x1-x2|£®
¢Ùµ±D=£¨0£¬1£©Ê±£¬f£¨x£©=lnxÊÇ·ñÊôÓÚMD£¬ÈôÊôÓÚMD£¬¸øÓèÖ¤Ã÷£¬·ñÔò˵Ã÷ÀíÓÉ£»
¢Úµ±D=(0£¬
3
3
)
£¬º¯Êýf£¨x£©=x3+ax+bʱ£¬Èôf£¨x£©¡ÊMD£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖªº¯Êýf£¨x£©=lg£¨1+x£©+lg£¨1-x£©£®¢ÙÇóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£®¢ÚÅжϺ¯ÊýµÄÆæżÐÔ£¬²¢¸øÓèÖ¤Ã÷£®
£¨2£©ÒÑÖªº¯Êýf£¨x£©=ax+3£¬£¨a£¾0ÇÒa¡Ù1£©£¬Çóº¯Êýf£¨x£©ÔÚ[0£¬2]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖªº¯Êýf£¨x£©=
x+3(x¡Ü0)
2x(x£¾0)
£¬Ôòf£¨f£¨-2£©£©Îª
2
2
£»
£¨2£©²»µÈʽf£¨x£©£¾2µÄ½â¼¯ÊÇ
£¨-1£¬0]¡È£¨1£¬+¡Þ£©
£¨-1£¬0]¡È£¨1£¬+¡Þ£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•ÆÖ¶«ÐÂÇøÄ£Ä⣩£¨1£©ÒÑÖªº¯Êýf£¨x£©=ax-x£¨a£¾1£©£®
¢ÙÈôf£¨3£©£¼0£¬ÊÔÇóaµÄÈ¡Öµ·¶Î§£»
¢Úд³öÒ»×éÊýa£¬x0£¨x0¡Ù3£¬±£Áô4λÓÐЧÊý×Ö£©£¬Ê¹µÃf£¨x0£©£¼0³ÉÁ¢£»
£¨2£©ÈôÇúÏßy=x+
p
x
£¨p¡Ù0£©ÉÏ´æÔÚÁ½¸ö²»Í¬µã¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬ÇóʵÊýpµÄÈ¡Öµ·¶Î§£»
£¨3£©µ±0£¼a£¼1ʱ£¬¾Íº¯Êýy=axÓëy=logaxµÄͼÏóµÄ½»µãÇé¿öÌá³öÄãµÄÎÊÌ⣬²¢¼ÓÒÔ½â¾ö£®£¨ËµÃ÷£º¢Ùº¯Êýf£¨x£©=xlnxÓÐÈçÏÂÐÔÖÊ£ºÔÚÇø¼ä(0£¬
1
e
]
Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼ä[
1
e
£¬1)
Éϵ¥µ÷µÝÔö£®½âÌâ¹ý³ÌÖпÉÒÔÀûÓ㻢ڽ«¸ù¾ÝÌá³öºÍ½â¾öÎÊÌâµÄ²»Í¬²ã´ÎÇø±ð¸ø·Ö£®£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
£¨1£©ÒÑÖªº¯Êýf£¨x£©=
1
2
x2   x¡Ü2
log2(x+a)  x£¾2
ÔÚ¶¨ÒåÓòÄÚÊÇÁ¬Ðøº¯Êý£¬ÊýÁÐ{an}ͨÏʽΪan=
1
an
£¬ÔòÊýÁÐ{an}µÄËùÓÐÏîÖ®ºÍΪ1£®
£¨2£©¹ýµãP£¨3£¬3£©ÓëÇúÏߣ¨x-2£©2-
(y-1)2
4
=1ÓÐΨһ¹«¹²µãµÄÖ±ÏßÓÐÇÒÖ»ÓÐÁ½Ìõ£®
£¨3£©ÏòÁ¿
a
=(x2£¬x+1)
£¬
b
=(1-x£¬t)
£¬Èôº¯Êýf£¨x£©=
a
b
ÔÚÇø¼ä[-1£¬1]ÉÏÊÇÔöº¯Êý£¬ÔòʵÊýtµÄÈ¡Öµ·¶Î§ÊÇ£¨5£¬+¡Þ£©£»
£¨4£©ÎÒÃǶ¨Òå·Ç¿Õ¼¯ºÏAµÄÕæ×Ó¼¯µÄÕæ×Ó¼¯ÎªAµÄ¡°ËO¡±£¬Ôò¼¯ºÏ{2£¬4£¬6£¬8£¬10}µÄ¡°ËO¡±ÓÐ26¸ö£®
ÆäÖÐÕýÈ·µÄÃüÌâÓÐ
£¨1£©£¨2£©£¨4£©
£¨1£©£¨2£©£¨4£©
£¨ÌîÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸