分析 (Ⅰ)利用等差数列的通项公式与求和公式,通过解方程组$\left\{\begin{array}{l}{{a}_{2}=2}\\{{S}_{5}={5a}_{3}=15}\end{array}\right.$,即可求得数列{an}的通项公式an及Sn;
(Ⅱ)依题意,利用裂项法可得bn=$\frac{1}{{a}_{n}}$•$\frac{1}{2{S}_{n+1}}$=$\frac{1}{2}$($\frac{1}{n(n+1)}$-$\frac{1}{(n+2)(n+1)}$),逐项累加,即可求得Tn=b1+b2+b3+…+bn.
解答 解:(Ⅰ)设等差数列{an}的公差为d,则$\left\{\begin{array}{l}{{a}_{2}=2}\\{{S}_{5}={5a}_{3}=15}\end{array}\right.$,
解得d=a3-a2=3-2=1,∴a1=1,
∴an=1+(n-1)=n;
Sn=$\frac{(1+n)n}{2}$;
(Ⅱ)∵bn=$\frac{1}{{a}_{n}}$•$\frac{1}{2{S}_{n+1}}$=$\frac{1}{n}$•$\frac{1}{(n+2)(n+1)}$=$\frac{1}{2}$($\frac{1}{n(n+1)}$-$\frac{1}{(n+2)(n+1)}$),
∴Tn=b1+b2+b3+…+bn,=$\frac{1}{2}$[($\frac{1}{2}$-$\frac{1}{6}$)+($\frac{1}{6}$-$\frac{1}{12}$)+…+($\frac{1}{n(n+1)}$-$\frac{1}{(n+2)(n+1)}$)]
=$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{(n+2)(n+1)}$)=$\frac{1}{4}$-$\frac{1}{2(n+2)(n+1)}$.
点评 本题考查数列的求和,考查等差数列的通项公式与求和公式的应用,突出考查裂项法求和,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a∥α,b∥β,则a∥b | B. | 若a?α,b?β,a∥b,则α∥β | ||
| C. | 若a∥b,b∥α,α∥β,则a∥β | D. | 若a⊥α,a⊥β,b⊥β,则b⊥α |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ | B. | -$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$ | C. | $\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$ | D. | -$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com