精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+bx-alnx.
(Ⅰ)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),n∈N,求n.
(Ⅱ)若对任意b∈[-2,-1],都存在x∈(1,e)(e 为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.
分析:(Ⅰ)先求导得到f′(x)=2x-
a
x
+b
,由f′(2)=4-
a
2
+b=0
,f(1)=1+b=0,得到a与b的值,再令导数大于0,或小于0,得到函数的单调区间,再由零点存在性定理得到得到x0∈(3,4),进而得到n的值;
(Ⅱ)令g(b)=xb+x2-alnx,b∈[-2,-1],问题转化为在x∈(1,e)上g(b)max=g(-1)<0有解即可,亦即只需存在x0∈(1,e)使得x2-x-alnx<0即可,连续利用导函数,然后分别对1-a≥0,1-a<0,看是否存在x0∈(1,e)使得h(x0)<h(1)=0,进而得到结论.
解答:解:(Ⅰ)f′(x)=2x-
a
x
+b
,∵x=2是函数f(x)的极值点,∴f′(2)=4-
a
2
+b=0

∵1是函数f(x)的零点,得f(1)=1+b=0,
4-
a
2
+b=0
1+b=0
,解得a=6,b=-1.…(2分)
∴f(x)=x2-x-6lnx,
f′(x)=2x-
6
x
-1
=
2x2-x-6
x
=
(2x+3)(x-2)
x
>0
,x∈(0,+∞),得x>2;   
令f′(x)<0得0<x<2,
所以f(x)在(0,2)上单调递减;在(2,+∞)上单调递增.…(4分)
故函数f(x)至多有两个零点,其中1∈(0,2),x0∈(2,+∞),
因为f(2)<f(1)=0,f(3)=6(1-ln3)<0,f(4)=6(2-ln4)=6ln
e2
4
0,
所以x0∈(3,4),故n=3.…(6分)
(Ⅱ)令g(b)=xb+x2-alnx,b∈[-2,-1],则g(b)为关于b的一次函数且为增函数,
根据题意,对任意b∈[-2,-1],都存在x∈(1,e)(e 为自然对数的底数),使得f(x)<0成立,
则在x∈(1,e)上g(b)max=g(-1)=-x+x2-alnx<0,有解,
令h(x)=x2-x-alnx,只需存在x0∈(1,e)使得h(x0)<0即可,
由于h′(x)=2x-1-
a
x
=
2x2-x-a
x

令φ(x)=2x2-x-a,x∈(1,e),φ'(x)=4x-1>0,
∴φ(x)在(1,e)上单调递增,φ(x)>φ(1)=1-a,…(9分)
①当1-a≥0,即a≤1时,φ(x)>0,即h′(x)>0,h(x)在(1,e)上单调递增,∴h(x)>h(1)=0,不符合题意.
②当1-a<0,即a>1时,φ(1)=1-a<0,φ(e)=2e2-e-a
若a≥2e2-e>1,则φ(e)<0,所以在(1,e)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上单调递减,
∴存在x0∈(1,e)使得h(x0)<h(1)=0,符合题意.
若2e2-e>a>1,则φ(e)>0,∴在(1,e)上一定存在实数m,使得φ(m)=0,
∴在(1,m)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上单调递减,
∴存在x0∈(1,e)使得h(x0)<h(1)=0,符合题意.
综上所述,当a>1时,对任意b∈[-2,-1],都存在x∈(1,e)(e 为自然对数的底数),使得f(x)<0成立.…(12分)
点评:本题考查利用导数求函数性质的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案