【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由
算得,
.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
科目:高中数学 来源: 题型:
【题目】已知定义在[﹣
,
]的函数f(x)=sinx(cosx+1)﹣ax,若y=f(x)仅有一个零点,则实数a的取值范围是( )
A.(
,2]
B.(﹣∞,
)∪[2,+∞)
C.[﹣
,
)
D.(﹣∞,﹣
]∪(
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,已知椭圆
的离心率为
,左右焦点分别为
和
,以点
为圆心,以
为半径的圆与以点
为圆心,以
为半径的圆相交,且交点在椭圆
上.
(
)求椭圆
的方程.
(
)设椭圆
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
、
两点,射线
交椭圆
于点
.
①求
的值.
②(理科生做)求
面积的最大值.
③(文科生做)当
时,
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业一天中不同时刻的用电量
(万千瓦时)关于时间
(小时,
)的函数
近似满足
,如图是函数
的部分图象(
对应凌晨
点).
![]()
(Ⅰ)根据图象,求
的值;
(Ⅱ)由于当地冬季雾霾严重,从环保的角度,既要控制火力发电厂的排放量,电力供应有限;又要控制企业的排放量,于是需要对各企业实行分时拉闸限电措施.已知该企业某日前半日能分配到的供电量
(万千瓦时)与时间
(小时)的关系可用线性函数模型
模拟.当供电量小于该企业的用电量时,企业就必须停产.初步预计停产时间在中午11点到12点间,为保证该企业既可提前准备应对停产,又可尽量减少停产时间,请从这个初步预计的时间段开始,用二分法帮其估算出精确到15分钟的停产时间段.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]时恒成立,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com