精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]时恒成立,求实数t的取值范围.

【答案】解:(Ⅰ)x≤﹣ 时,x+3≤x,不成立;
<x<2时,﹣3x+1≤x,解得x≥ ,∴ ≤x<2;
x≥2时,﹣x﹣3≤x,∴x≥﹣ ,∴x≥2,
综上所述,不等式f(x)≤x的解集为[ ,+∞);
(II )x∈[﹣2,﹣1]时,f(x)=x+3,最小值为1.
∵不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]时恒成立,
∴t2﹣t≤1,
≤t≤
【解析】(Ⅰ)根据绝对值的几何运用,分类讨论,求得f(x)≤x的解集.(Ⅱ)x∈[﹣2,﹣1]时,f(x)=x+3,最小值为1,再根据t2﹣t≤1,求得实数t的取值范围.
【考点精析】掌握绝对值不等式的解法是解答本题的根本,需要知道含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρsinθ+3=0,A、B两点极坐标分别为(1,π)、(1,0).
(1)求曲线C的参数方程;
(2)在曲线C上取一点P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

算得,

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足 =
(1)求证: + =
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法中错误的是

A. 在频率分布直方图中,中位数左边和右边的直方图的面积相等 .

B. 一个样本的方差是,则这组数据的总和等于60.

C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越差.

D. 对于命题使得0,则,使.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的值;

(2)已知在定义域上为减函数,若对任意的,不等式为常数)恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们为了探究函数的部分性质,先列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.004

4.02

4.04

4.3

5

5.8

7.57

观察表中值随值变化的特点,完成以下的问题.

首先比较容易看得出来:此函数在区间上是递减的;

(1)函数在区间 上递增

时,= .

(2)请你根据上面性质作出此函数的大概图像;

(3)试用函数单调性的定义证明:函数在区间上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)求在区间上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情况如上:

所以,的单调递减区间是,单调递增区间是.

(Ⅱ)当,即时,函数上单调递增,

所以在区间上的最小值为.

,即时,

由(Ⅰ)知上单调递减,在上单调递增,

所以在区间上的最小值为.

,即时,函数上单调递减,

所以在区间上的最小值为.

综上,当时,的最小值为

时,的最小值为

时,的最小值为.

型】解答
束】
19

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

1)求的方程;

2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最大值;

(2)当时,函数有最小值. 的最小值为,求函数的值域.

查看答案和解析>>

同步练习册答案