【题目】已知椭圆 +y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足 = .
(1)求证: + = ;
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.
【答案】
(1))证明:分别连接AB、BC、CD、AD,∵AC、BD相交于原点O,
根据椭圆的对称性可知,AC、BD互相平分,且原点O为它们的中点.
则四边形ABCD为平行四边形,故 ,即 + =
(2)解:∵ = ,∴4y1y2=x1x2,
若直线AB的斜率不存在(或AB的斜率为0时),不满足4y1y2=x1x2;
直线AB的斜率存在且不为0时,设直线方程为y=kx+m,A(x1,y1),B(x2,y2).
联立 ,得(1+4k2)x2+8kmx+4(m2﹣1)=0.
△=(8km)2﹣4(1+4k2)(4m2﹣4)=16(4k2﹣m2+1)>0,①
.
∵4y1y2=x1x2,又 ,
∴ ,
即 .
整理得:k= .
∵A、B、C、D的位置可以轮换,∴AB、BC的斜率一个是 ,另一个就是 .
∴kAB+kBC= ,是定值.
不妨设 ,则 .
设原点到直线AB的距离为d,则
= ≤1.
当m2=1时满足①取等号.
∴S四边形ABCD=4S△AOB≤4,即四边形ABCD面积的最大值为4
【解析】(1)由题意可得四边形ABCD为平行四边形,故 ,即 + = ;(2)由 = ,得4y1y2=x1x2 , 若直线AB的斜率不存在(或AB的斜率为0时),不满足4y1y2=x1x2;当直线AB的斜率存在且不为0时,设直线方程为y=kx+m,A(x1 , y1),B(x2 , y2).联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得A,B的横坐标的和与积,结合4y1y2=x1x2
求得k,把三角形AOB的面积化为关于m的函数,利用基本不等式求其最值,进一步得到四边形ABCD面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知二次函数,满足,.
(1)求函数的解析式;
(2)若关于的不等式在上有解,求实数的取值范围;
(3)若函数的两个零点分别在区间和内,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业一天中不同时刻的用电量(万千瓦时)关于时间(小时,)的函数近似满足,如图是函数的部分图象(对应凌晨点).
(Ⅰ)根据图象,求的值;
(Ⅱ)由于当地冬季雾霾严重,从环保的角度,既要控制火力发电厂的排放量,电力供应有限;又要控制企业的排放量,于是需要对各企业实行分时拉闸限电措施.已知该企业某日前半日能分配到的供电量 (万千瓦时)与时间(小时)的关系可用线性函数模型模拟.当供电量小于该企业的用电量时,企业就必须停产.初步预计停产时间在中午11点到12点间,为保证该企业既可提前准备应对停产,又可尽量减少停产时间,请从这个初步预计的时间段开始,用二分法帮其估算出精确到15分钟的停产时间段.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]时恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量单位:克,重量分组区间为,,,,由此得到样本的重量频率分布直方图如图.
(1)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量内的小球个数为,求的分布列和数学期望.(以直方图中的频率作为概率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R,且对任意的x,y∈R有f(x+y)=f(x)+f(y)当时,,f(1)=1
(1)求f(0),f(3)的值;
(2)判断f(x)的单调性并证明;
(3)若f(4x-a)+f(6+2x+1)>2对任意x∈R恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com